Novel Insight into the mechanism of di (2-ethylhexyl) phthalate (DEHP) impairing early follicle development

IF 6.2 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Ecotoxicology and Environmental Safety Pub Date : 2024-09-17 DOI:10.1016/j.ecoenv.2024.117043
{"title":"Novel Insight into the mechanism of di (2-ethylhexyl) phthalate (DEHP) impairing early follicle development","authors":"","doi":"10.1016/j.ecoenv.2024.117043","DOIUrl":null,"url":null,"abstract":"<div><p>Di (2-ethylhexyl) phthalate (DEHP), an artificially synthetic plasticizer, is a widespread environmental endocrine disruptor, which has raised substantial concern among the public about its potential reproductive toxicity effects. Taking large amounts of DEHP disrupts the normal functioning of the ovaries, however, the toxicological effects and the mechanisms by which DEHP impairs fetal folliculogenesis remain poorly understood. Our research aims to elucidate the associations between utero exposure to DEHP and fetal folliculogenesis in offspring. In this research, we monitored the spatiotemporal and expression levels of GDF9-Hedgehog (Hh) pathway-related genes during postnatal days 3–14, confirming initially the potential associations between defects in theca cell development and the downregulation of GDF9-Hh signaling. Moreover, utilizing an ovarian organ in vitro culture model, rescue validation experiments demonstrated that the addition of recombinant GDF9 protein effectively alleviate the theca cell damage caused by DEHP, thus supporting the aforementioned associations. In conclusion, our findings validate the significant role of the GDF9-Hh pathway in the enduring reproductive toxicity resulting from prenatal exposure to DEHP.</p></div>","PeriodicalId":303,"journal":{"name":"Ecotoxicology and Environmental Safety","volume":null,"pages":null},"PeriodicalIF":6.2000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0147651324011199/pdfft?md5=d7f8eefc315c5e3b0085e83d6ffbec80&pid=1-s2.0-S0147651324011199-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecotoxicology and Environmental Safety","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0147651324011199","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Di (2-ethylhexyl) phthalate (DEHP), an artificially synthetic plasticizer, is a widespread environmental endocrine disruptor, which has raised substantial concern among the public about its potential reproductive toxicity effects. Taking large amounts of DEHP disrupts the normal functioning of the ovaries, however, the toxicological effects and the mechanisms by which DEHP impairs fetal folliculogenesis remain poorly understood. Our research aims to elucidate the associations between utero exposure to DEHP and fetal folliculogenesis in offspring. In this research, we monitored the spatiotemporal and expression levels of GDF9-Hedgehog (Hh) pathway-related genes during postnatal days 3–14, confirming initially the potential associations between defects in theca cell development and the downregulation of GDF9-Hh signaling. Moreover, utilizing an ovarian organ in vitro culture model, rescue validation experiments demonstrated that the addition of recombinant GDF9 protein effectively alleviate the theca cell damage caused by DEHP, thus supporting the aforementioned associations. In conclusion, our findings validate the significant role of the GDF9-Hh pathway in the enduring reproductive toxicity resulting from prenatal exposure to DEHP.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
邻苯二甲酸二(2-乙基己酯)(DEHP)损害早期卵泡发育机制的新见解
邻苯二甲酸二(2-乙基己基)酯(DEHP)是一种人工合成的增塑剂,是一种广泛存在的环境内分泌干扰物,其潜在的生殖毒性影响引起了公众的极大关注。大量摄入DEHP会破坏卵巢的正常功能,但DEHP对胎儿卵泡生成的毒理影响和机制仍鲜为人知。我们的研究旨在阐明子宫暴露于 DEHP 与胎儿卵泡生成之间的关联。在这项研究中,我们监测了出生后第3-14天GDF9-Hedgehog(Hh)通路相关基因的时空和表达水平,初步证实了theca细胞发育缺陷与GDF9-Hh信号下调之间的潜在关联。此外,利用卵巢器官体外培养模型进行的拯救验证实验表明,添加重组 GDF9 蛋白可有效缓解 DEHP 对卵巢ca 细胞的损伤,从而支持了上述关联。总之,我们的研究结果验证了GDF9-Hh通路在产前暴露于DEHP所导致的持久生殖毒性中的重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
12.10
自引率
5.90%
发文量
1234
审稿时长
88 days
期刊介绍: Ecotoxicology and Environmental Safety is a multi-disciplinary journal that focuses on understanding the exposure and effects of environmental contamination on organisms including human health. The scope of the journal covers three main themes. The topics within these themes, indicated below, include (but are not limited to) the following: Ecotoxicology、Environmental Chemistry、Environmental Safety etc.
期刊最新文献
Crotonaldehyde paralyzes arteries by inducing impairment of ion channels, vascular histiocytic injury, overproduction of reactive oxygen species, mitochondrial damage, and autophagy Taraxasterol attenuates zearalenone-induced kidney damage in mice by modulating oxidative stress and endoplasmic reticulum stress Polystyrene nanoplastics mediate skeletal toxicity through oxidative stress and the BMP pathway in zebrafish (Danio rerio) Dietary Aflatoxin G1 exposure causes an imbalance between pulmonary tissue-resident alveolar macrophages and monocyte-derived macrophages in both mother and offspring mice Potential toxicity of carbonaceous nanomaterials on aquatic organisms and their alleviation strategies: A review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1