Rahul Banyal , Sonu Sonu , Vatika Soni , Akshay Chawla , Pankaj Raizada , Tansir Ahamad , Sourbh Thakur , Van-Huy Nguyen , Pardeep Singh
{"title":"Synergetic photocatalytic degradation of the tetracycline antibiotic over S-scheme based BiOBr/CuInS2/WO3 ternary heterojunction photocatalyst","authors":"Rahul Banyal , Sonu Sonu , Vatika Soni , Akshay Chawla , Pankaj Raizada , Tansir Ahamad , Sourbh Thakur , Van-Huy Nguyen , Pardeep Singh","doi":"10.1016/j.solidstatesciences.2024.107700","DOIUrl":null,"url":null,"abstract":"<div><p>The present research investigated the photodegradation capability of a ternary BiOBr/CuInS<sub>2</sub>/WO<sub>3</sub> heterojunction against the tetracycline (TC) antibiotic. BiOBr/CuInS<sub>2</sub>/WO<sub>3</sub> heterojunction is formed using a straightforward physical mixing method, whereas pure photocatalysts (CuInS<sub>2</sub>, WO<sub>3</sub>) were synthesized hydrothermally and BiOBr by a coprecipitation process. The Field Emission Scanning Electron Spectroscopy examination validated the nanorod and nanosheet shape of the fabricated BiOBr-CuInS<sub>2</sub>-WO<sub>3</sub>. The photodegradation capabilities of the BiOBr-CuInS<sub>2</sub>-WO<sub>3</sub> heterojunction were superior to those of other pure photocatalysts, and it followed the S-scheme charge transfer route as indicated by the band alignments. After 120 min of light irradiation, the BiOBr/CuInS<sub>2</sub>/WO<sub>3</sub> S-scheme ternary heterojunction obtained a photodegradation rate of 98.9 %, much greater than other pure photocatalysts. According to electron spin resonance investigations and scavenging experiments, the radicals hydroxyl radicals (<sup>•</sup>OH), hole (h<sup>+</sup>), superoxide (•O<sub>2</sub><sup>−</sup>) play a significant role in the photodegradation of TC. The ternary heterojunction's improved light absorption, lower recombination rate, and higher photocarrier separation rate were due to the fabrication of S-scheme heterojunction. The ternary BiOBr/CuInS<sub>2</sub>/WO<sub>3</sub> photocatalyst's photodegradation efficacy was consequently enhanced. Investigations for photocatalyst reusability demonstrated its exceptional stability, with a 93.8 % degradation rate after five catalytic cycles.</p></div>","PeriodicalId":432,"journal":{"name":"Solid State Sciences","volume":"157 ","pages":"Article 107700"},"PeriodicalIF":3.4000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Sciences","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1293255824002656","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
The present research investigated the photodegradation capability of a ternary BiOBr/CuInS2/WO3 heterojunction against the tetracycline (TC) antibiotic. BiOBr/CuInS2/WO3 heterojunction is formed using a straightforward physical mixing method, whereas pure photocatalysts (CuInS2, WO3) were synthesized hydrothermally and BiOBr by a coprecipitation process. The Field Emission Scanning Electron Spectroscopy examination validated the nanorod and nanosheet shape of the fabricated BiOBr-CuInS2-WO3. The photodegradation capabilities of the BiOBr-CuInS2-WO3 heterojunction were superior to those of other pure photocatalysts, and it followed the S-scheme charge transfer route as indicated by the band alignments. After 120 min of light irradiation, the BiOBr/CuInS2/WO3 S-scheme ternary heterojunction obtained a photodegradation rate of 98.9 %, much greater than other pure photocatalysts. According to electron spin resonance investigations and scavenging experiments, the radicals hydroxyl radicals (•OH), hole (h+), superoxide (•O2−) play a significant role in the photodegradation of TC. The ternary heterojunction's improved light absorption, lower recombination rate, and higher photocarrier separation rate were due to the fabrication of S-scheme heterojunction. The ternary BiOBr/CuInS2/WO3 photocatalyst's photodegradation efficacy was consequently enhanced. Investigations for photocatalyst reusability demonstrated its exceptional stability, with a 93.8 % degradation rate after five catalytic cycles.
期刊介绍:
Solid State Sciences is the journal for researchers from the broad solid state chemistry and physics community. It publishes key articles on all aspects of solid state synthesis, structure-property relationships, theory and functionalities, in relation with experiments.
Key topics for stand-alone papers and special issues:
-Novel ways of synthesis, inorganic functional materials, including porous and glassy materials, hybrid organic-inorganic compounds and nanomaterials
-Physical properties, emphasizing but not limited to the electrical, magnetical and optical features
-Materials related to information technology and energy and environmental sciences.
The journal publishes feature articles from experts in the field upon invitation.
Solid State Sciences - your gateway to energy-related materials.