{"title":"Evaluation of the effect of binder type and layer thickness on the performnce of open graded friction courses","authors":"Ohhoon Kwon , Gregory Sholar , Shahbaz Khan , Mang Tia","doi":"10.1016/j.conbuildmat.2024.138395","DOIUrl":null,"url":null,"abstract":"<div><p>To improve the long-term durability and functionality of open graded friction courses (OGFC), the Florida Department of Transportation (FDOT) investigated the use of a highly modified asphalt binder and increased thickness using Accelerated Pavement Testing (APT). A total of six test sections with combinations of two modified binder types (PG 76–22 and PG 82–22) and three lift thicknesses of 0.75 (19.05 mm), 1.25 (31.75 mm) and 2 (50.8) inches were constructed at FDOT’s APT facility. Accelerated loading was performed using a Heavy Vehicle Simulator (HVS) to evaluate the relative rutting performance of the test sections. Supplementary field and laboratory tests to evaluate tensile strength, Cantabro loss, field permeability, surface characteristics, and asphalt binder properties were also conducted. Test results indicated that the use of PG 82–22 polymer modified asphalt (PMA) binder may be beneficial to improve long-term durability of the OGFC. Thicker layers of OGFC were found to have considerably lower durability. It is recommended that the use of a highly modified PMA asphalt binder in OGFC layers be considered when raveling and other durability issues are of concern.</p></div>","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":"449 ","pages":"Article 138395"},"PeriodicalIF":4.4000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Polymer Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950061824035372","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
To improve the long-term durability and functionality of open graded friction courses (OGFC), the Florida Department of Transportation (FDOT) investigated the use of a highly modified asphalt binder and increased thickness using Accelerated Pavement Testing (APT). A total of six test sections with combinations of two modified binder types (PG 76–22 and PG 82–22) and three lift thicknesses of 0.75 (19.05 mm), 1.25 (31.75 mm) and 2 (50.8) inches were constructed at FDOT’s APT facility. Accelerated loading was performed using a Heavy Vehicle Simulator (HVS) to evaluate the relative rutting performance of the test sections. Supplementary field and laboratory tests to evaluate tensile strength, Cantabro loss, field permeability, surface characteristics, and asphalt binder properties were also conducted. Test results indicated that the use of PG 82–22 polymer modified asphalt (PMA) binder may be beneficial to improve long-term durability of the OGFC. Thicker layers of OGFC were found to have considerably lower durability. It is recommended that the use of a highly modified PMA asphalt binder in OGFC layers be considered when raveling and other durability issues are of concern.
期刊介绍:
ACS Applied Polymer Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics, and biology relevant to applications of polymers.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates fundamental knowledge in the areas of materials, engineering, physics, bioscience, polymer science and chemistry into important polymer applications. The journal is specifically interested in work that addresses relationships among structure, processing, morphology, chemistry, properties, and function as well as work that provide insights into mechanisms critical to the performance of the polymer for applications.