{"title":"An ionic liquid crystal functionalized nanocellulose lubricant additives","authors":"","doi":"10.1016/j.carbpol.2024.122744","DOIUrl":null,"url":null,"abstract":"<div><p>Cellulose, one of nature's most abundant, clean, and sustainable resources, has often shown unsatisfactory results when used as bio-lubricant additives. Herein, nanocellulose (NC) from amorphous waste natural poplar was extracted using deep eutectic solvent encapsulation treatment and chlorine bleaching process. Subsequently, 1-hexadecyl-3-methylimidazolium bromide was integrated onto NC using a one-step hydrothermal treatment (high-temperature and high-pressure environment) to obtain ionic liquid crystal (ILC) functionalized products (named as ILC-NC). After ball-milling process and solid phase separation step, ILC-NC exhibits excellent dispersion stability and lubrication properties in the liquid phase (including water and vegetable oil). Based on the polar and colloidal activity properties of ILC, it can form an ordered molecular layer on NC surface and form a lubricating film-like structure, making NC smoother and sliding well. Compared to ILC/NC aqueous dispersion, ILC-NC reduces the coefficient of friction and wear rate on steel disk surface by 68.75 % and 74.07 %, respectively. The minimum coefficient of friction was further reduced to 0.032 as dispersing ILC-NC in sunflower oil, showing a reduction of 0.134 (77.91 %) compared to pure sunflower oil. Finally, the lubrication theoretical model calculation reveals the lubrication state of ILC-NC on the steel disk surface and proposes the lubrication mechanism.</p></div>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":null,"pages":null},"PeriodicalIF":10.7000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymers","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0144861724009706","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Cellulose, one of nature's most abundant, clean, and sustainable resources, has often shown unsatisfactory results when used as bio-lubricant additives. Herein, nanocellulose (NC) from amorphous waste natural poplar was extracted using deep eutectic solvent encapsulation treatment and chlorine bleaching process. Subsequently, 1-hexadecyl-3-methylimidazolium bromide was integrated onto NC using a one-step hydrothermal treatment (high-temperature and high-pressure environment) to obtain ionic liquid crystal (ILC) functionalized products (named as ILC-NC). After ball-milling process and solid phase separation step, ILC-NC exhibits excellent dispersion stability and lubrication properties in the liquid phase (including water and vegetable oil). Based on the polar and colloidal activity properties of ILC, it can form an ordered molecular layer on NC surface and form a lubricating film-like structure, making NC smoother and sliding well. Compared to ILC/NC aqueous dispersion, ILC-NC reduces the coefficient of friction and wear rate on steel disk surface by 68.75 % and 74.07 %, respectively. The minimum coefficient of friction was further reduced to 0.032 as dispersing ILC-NC in sunflower oil, showing a reduction of 0.134 (77.91 %) compared to pure sunflower oil. Finally, the lubrication theoretical model calculation reveals the lubrication state of ILC-NC on the steel disk surface and proposes the lubrication mechanism.
期刊介绍:
Carbohydrate Polymers stands as a prominent journal in the glycoscience field, dedicated to exploring and harnessing the potential of polysaccharides with applications spanning bioenergy, bioplastics, biomaterials, biorefining, chemistry, drug delivery, food, health, nanotechnology, packaging, paper, pharmaceuticals, medicine, oil recovery, textiles, tissue engineering, wood, and various aspects of glycoscience.
The journal emphasizes the central role of well-characterized carbohydrate polymers, highlighting their significance as the primary focus rather than a peripheral topic. Each paper must prominently feature at least one named carbohydrate polymer, evident in both citation and title, with a commitment to innovative research that advances scientific knowledge.