An ionic liquid crystal functionalized nanocellulose lubricant additives

IF 10.7 1区 化学 Q1 CHEMISTRY, APPLIED Carbohydrate Polymers Pub Date : 2024-09-17 DOI:10.1016/j.carbpol.2024.122744
{"title":"An ionic liquid crystal functionalized nanocellulose lubricant additives","authors":"","doi":"10.1016/j.carbpol.2024.122744","DOIUrl":null,"url":null,"abstract":"<div><p>Cellulose, one of nature's most abundant, clean, and sustainable resources, has often shown unsatisfactory results when used as bio-lubricant additives. Herein, nanocellulose (NC) from amorphous waste natural poplar was extracted using deep eutectic solvent encapsulation treatment and chlorine bleaching process. Subsequently, 1-hexadecyl-3-methylimidazolium bromide was integrated onto NC using a one-step hydrothermal treatment (high-temperature and high-pressure environment) to obtain ionic liquid crystal (ILC) functionalized products (named as ILC-NC). After ball-milling process and solid phase separation step, ILC-NC exhibits excellent dispersion stability and lubrication properties in the liquid phase (including water and vegetable oil). Based on the polar and colloidal activity properties of ILC, it can form an ordered molecular layer on NC surface and form a lubricating film-like structure, making NC smoother and sliding well. Compared to ILC/NC aqueous dispersion, ILC-NC reduces the coefficient of friction and wear rate on steel disk surface by 68.75 % and 74.07 %, respectively. The minimum coefficient of friction was further reduced to 0.032 as dispersing ILC-NC in sunflower oil, showing a reduction of 0.134 (77.91 %) compared to pure sunflower oil. Finally, the lubrication theoretical model calculation reveals the lubrication state of ILC-NC on the steel disk surface and proposes the lubrication mechanism.</p></div>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":null,"pages":null},"PeriodicalIF":10.7000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymers","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0144861724009706","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Cellulose, one of nature's most abundant, clean, and sustainable resources, has often shown unsatisfactory results when used as bio-lubricant additives. Herein, nanocellulose (NC) from amorphous waste natural poplar was extracted using deep eutectic solvent encapsulation treatment and chlorine bleaching process. Subsequently, 1-hexadecyl-3-methylimidazolium bromide was integrated onto NC using a one-step hydrothermal treatment (high-temperature and high-pressure environment) to obtain ionic liquid crystal (ILC) functionalized products (named as ILC-NC). After ball-milling process and solid phase separation step, ILC-NC exhibits excellent dispersion stability and lubrication properties in the liquid phase (including water and vegetable oil). Based on the polar and colloidal activity properties of ILC, it can form an ordered molecular layer on NC surface and form a lubricating film-like structure, making NC smoother and sliding well. Compared to ILC/NC aqueous dispersion, ILC-NC reduces the coefficient of friction and wear rate on steel disk surface by 68.75 % and 74.07 %, respectively. The minimum coefficient of friction was further reduced to 0.032 as dispersing ILC-NC in sunflower oil, showing a reduction of 0.134 (77.91 %) compared to pure sunflower oil. Finally, the lubrication theoretical model calculation reveals the lubrication state of ILC-NC on the steel disk surface and proposes the lubrication mechanism.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
离子液晶功能化纳米纤维素润滑添加剂
纤维素是自然界最丰富、最清洁、最可持续的资源之一,但在用作生物润滑油添加剂时,效果往往不尽如人意。本文采用深共晶溶剂封装处理和氯漂工艺,从无定形废弃天然杨木中提取了纳米纤维素(NC)。然后,通过一步水热处理(高温高压环境)将 1-十六烷基-3-甲基溴化咪唑鎓整合到 NC 上,得到离子液晶(ILC)功能化产品(命名为 ILC-NC)。经过球磨工艺和固相分离步骤后,ILC-NC 在液相(包括水和植物油)中表现出优异的分散稳定性和润滑性能。基于 ILC 的极性和胶体活性特性,它能在 NC 表面形成有序的分子层,形成润滑膜状结构,使 NC 更加光滑,滑动性能良好。与 ILC/NC 水分散液相比,ILC-NC 可使钢盘表面的摩擦系数和磨损率分别降低 68.75 % 和 74.07 %。在葵花籽油中分散 ILC-NC 后,最小摩擦系数进一步降低到 0.032,与纯葵花籽油相比降低了 0.134(77.91%)。最后,润滑理论模型计算揭示了 ILC-NC 在钢盘表面的润滑状态,并提出了润滑机理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Carbohydrate Polymers
Carbohydrate Polymers 化学-高分子科学
CiteScore
22.40
自引率
8.00%
发文量
1286
审稿时长
47 days
期刊介绍: Carbohydrate Polymers stands as a prominent journal in the glycoscience field, dedicated to exploring and harnessing the potential of polysaccharides with applications spanning bioenergy, bioplastics, biomaterials, biorefining, chemistry, drug delivery, food, health, nanotechnology, packaging, paper, pharmaceuticals, medicine, oil recovery, textiles, tissue engineering, wood, and various aspects of glycoscience. The journal emphasizes the central role of well-characterized carbohydrate polymers, highlighting their significance as the primary focus rather than a peripheral topic. Each paper must prominently feature at least one named carbohydrate polymer, evident in both citation and title, with a commitment to innovative research that advances scientific knowledge.
期刊最新文献
Editorial Board Rapid surface acetylation of cellulosic materials at room temperature by immersion method How to select agroforestry waste biomass for electrospinning and its potential application in bone tissue engineering Chromatography-free synthesis of 2A,2B-disulfonated β-cyclodextrin for regiospecific di-substitution Two-directions mechanical strength and high-barrier mechanisms of cellulose nanocrystal- based hybrids reinforced packaging with nacre-mimetic structure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1