A novel NASICON-type Na3MnTi0.5Zr0.5(PO4)3 cathode material with multivalent redox reaction for high performance sodium-ion batteries

IF 9.7 1区 化学 Q1 CHEMISTRY, PHYSICAL Journal of Colloid and Interface Science Pub Date : 2024-09-16 DOI:10.1016/j.jcis.2024.09.152
Kexin Rao, Yulei Sui, Mengting Deng, Keyi Sun, Yian Wang, Wenbin Fei, Yichao Shi, Xiaoping Zhang, Ling Wu
{"title":"A novel NASICON-type Na3MnTi0.5Zr0.5(PO4)3 cathode material with multivalent redox reaction for high performance sodium-ion batteries","authors":"Kexin Rao,&nbsp;Yulei Sui,&nbsp;Mengting Deng,&nbsp;Keyi Sun,&nbsp;Yian Wang,&nbsp;Wenbin Fei,&nbsp;Yichao Shi,&nbsp;Xiaoping Zhang,&nbsp;Ling Wu","doi":"10.1016/j.jcis.2024.09.152","DOIUrl":null,"url":null,"abstract":"<div><p>Na<sub>3</sub>MnZr(PO<sub>4</sub>)<sub>3</sub>, a typical manganese-based NASICON-type material, has consistently been at the forefront of research on cathode materials for sodium-ion batteries due to the abundant manganese reserve and high operating voltage. However, the severe Jahn-Teller effect, poor electronic conductivity and kinetic limitation of Na<sub>3</sub>MnZr(PO<sub>4</sub>)<sub>3</sub> impose constraints on its rate capability and cycling performance, thereby hindering its practical application. To address this challenge, a ternary NASICON-type material Na<sub>3</sub>MnTi<sub>0.5</sub>Zr<sub>0.5</sub>(PO<sub>4</sub>)<sub>3</sub>/C, with a multi-metal synergistic effect, is proposed in this study. The substitution of Ti at Zr site significantly mitigates the Jahn-Teller effect induced by Mn<sup>3+</sup>. Furthermore, the stability of the Zr<img>O bond is enhanced, leading to a more robust crystal structure overall. Cyclic voltammetry and constant-current intermittent titration techniques reveal that the appropriate Ti substitution markedly boosts the electronic conductivity and Na<sup>+</sup> diffusion coefficient of the electrode material, thereby mitigating polarization effects and expediting electrode reaction rates. Leveraging the multi-effect of Ti substitution, the prepared Na<sub>3</sub>MnTi<sub>0.5</sub>Zr<sub>0.5</sub>(PO<sub>4</sub>)<sub>3</sub>/C presents an improved electrochemical performance. Notably, Na<sub>3</sub>MnTi<sub>0.5</sub>Zr<sub>0.5</sub>(PO<sub>4</sub>)<sub>3</sub>/C enables a high discharge capacity of 71.0 mAh g<sup>−1</sup> at 10C and maintains 78.8 % capacity after 1000 cycles at 2C rate. This investigation establishes a robust theoretical foundation for comprehending the synergistic effects of multimetal systems in NASICON materials and offers insights into the development of cost-effective, high-performance cathode materials.</p></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"678 ","pages":"Pages 359-368"},"PeriodicalIF":9.7000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979724022185","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Na3MnZr(PO4)3, a typical manganese-based NASICON-type material, has consistently been at the forefront of research on cathode materials for sodium-ion batteries due to the abundant manganese reserve and high operating voltage. However, the severe Jahn-Teller effect, poor electronic conductivity and kinetic limitation of Na3MnZr(PO4)3 impose constraints on its rate capability and cycling performance, thereby hindering its practical application. To address this challenge, a ternary NASICON-type material Na3MnTi0.5Zr0.5(PO4)3/C, with a multi-metal synergistic effect, is proposed in this study. The substitution of Ti at Zr site significantly mitigates the Jahn-Teller effect induced by Mn3+. Furthermore, the stability of the ZrO bond is enhanced, leading to a more robust crystal structure overall. Cyclic voltammetry and constant-current intermittent titration techniques reveal that the appropriate Ti substitution markedly boosts the electronic conductivity and Na+ diffusion coefficient of the electrode material, thereby mitigating polarization effects and expediting electrode reaction rates. Leveraging the multi-effect of Ti substitution, the prepared Na3MnTi0.5Zr0.5(PO4)3/C presents an improved electrochemical performance. Notably, Na3MnTi0.5Zr0.5(PO4)3/C enables a high discharge capacity of 71.0 mAh g−1 at 10C and maintains 78.8 % capacity after 1000 cycles at 2C rate. This investigation establishes a robust theoretical foundation for comprehending the synergistic effects of multimetal systems in NASICON materials and offers insights into the development of cost-effective, high-performance cathode materials.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于高性能钠离子电池的具有多价氧化还原反应的新型 NASICON 型 Na3MnTi0.5Zr0.5(PO4)3 正极材料
Na3MnZr(PO4)3 是一种典型的锰基 NASICON 型材料,由于具有丰富的锰储量和较高的工作电压,一直处于钠离子电池正极材料研究的前沿。然而,Na3MnZr(PO4)3 严重的贾恩-泰勒效应、较差的电子传导性和动力学限制对其速率能力和循环性能造成了制约,从而阻碍了其实际应用。为解决这一难题,本研究提出了一种具有多金属协同效应的三元 NASICON 型材料 Na3MnTi0.5Zr0.5(PO4)3/C。在 Zr 位点取代 Ti 能显著缓解 Mn3+ 引发的 Jahn-Teller 效应。此外,ZrO 键的稳定性也得到了增强,从而使晶体结构整体上更加坚固。循环伏安法和恒流间歇滴定技术表明,适当的钛替代能显著提高电极材料的电子电导率和 Na+ 扩散系数,从而减轻极化效应并加快电极反应速度。利用 Ti 取代的多重效应,制备出的 Na3MnTi0.5Zr0.5(PO4)3/C 具有更好的电化学性能。值得注意的是,Na3MnTi0.5Zr0.5(PO4)3/C 在 10C 下可实现 71.0 mAh g-1 的高放电容量,并且在 2C 速率下循环 1000 次后仍能保持 78.8 % 的容量。这项研究为理解 NASICON 材料中多金属体系的协同效应奠定了坚实的理论基础,并为开发具有成本效益的高性能阴极材料提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
期刊最新文献
An interfacial layer constructed by in situ polymerizing trimethyl phosphate and ethylene carbonate enabling durable solid-state lithium metal batteries. Structural coupling of Mg-intercalated bilayer and monolayer V2O5 for high-stability and high-capacity aqueous zinc-ion batteries. Harvesting electricity from the multiple dynamic processes of water through the hierarchical structure of wood utilized for water transport. Site-selective alkaline metal ions electrochemical storage in porphyrin-based hydrogen-bonded organic framework. Crystalline boron-boosted Fenton-like activation of persulfate by carbon-coated nano zero-valent iron for efficient degradation of tetracycline.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1