Synthesis and optimization of GO/TiO2@n-octadecane microcapsules for thermal management of smartphone charging

IF 6.1 2区 工程技术 Q2 ENERGY & FUELS Applied Thermal Engineering Pub Date : 2024-09-15 DOI:10.1016/j.applthermaleng.2024.124409
{"title":"Synthesis and optimization of GO/TiO2@n-octadecane microcapsules for thermal management of smartphone charging","authors":"","doi":"10.1016/j.applthermaleng.2024.124409","DOIUrl":null,"url":null,"abstract":"<div><p>To reduce the charging temperature of smartphones effectively, the GO/TiO<sub>2</sub>@n-octadecane microcapsules were prepared in this study. Various testing methods were used to analyze the thermal performance of microcapsules. To achieve maximum enthalpy of phase change, various preparation conditions for the preparation process were optimized. The GO was doped into the optimized microencapsulated phase change materials for further analysis. Moreover, the GO/TiO<sub>2</sub>@n-octadecane microcapsules were used for the thermal management of smartphone charging. GO was attached to the surface of microcapsules, enhancing the thermal conductivity. Microcapsules were physically encapsulated without any chemical reactions. The enthalpies of microcapsules decreased with the proportion of GO, while the thermal conductivity increased. The prepared GO/TiO<sub>2</sub>@n-octadecane microcapsules had excellent thermal cycling stability and fire resistance. The GO could reduce the mass loss of microcapsules in high temperatures. Microencapsulated phase change materials containing 0 wt%, 1 wt%, 2 wt%, and 3 wt% GO had an excellent ability to reduce the charging temperature of smartphones, which could reduce the peak charging temperature of smartphones by 2.9, 3.1, 2.7, and 2.5 ℃, respectively. Microcapsules containing 1 wt% GO had a large enthalpy of phase transition and high thermal conductivity, which could most effectively reduce the peak charging temperature of the smartphone. Therefore, microcapsules with 1 wt% GO were the optimal microcapsules for the thermal management of smartphone charging.</p></div>","PeriodicalId":8201,"journal":{"name":"Applied Thermal Engineering","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359431124020775","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

To reduce the charging temperature of smartphones effectively, the GO/TiO2@n-octadecane microcapsules were prepared in this study. Various testing methods were used to analyze the thermal performance of microcapsules. To achieve maximum enthalpy of phase change, various preparation conditions for the preparation process were optimized. The GO was doped into the optimized microencapsulated phase change materials for further analysis. Moreover, the GO/TiO2@n-octadecane microcapsules were used for the thermal management of smartphone charging. GO was attached to the surface of microcapsules, enhancing the thermal conductivity. Microcapsules were physically encapsulated without any chemical reactions. The enthalpies of microcapsules decreased with the proportion of GO, while the thermal conductivity increased. The prepared GO/TiO2@n-octadecane microcapsules had excellent thermal cycling stability and fire resistance. The GO could reduce the mass loss of microcapsules in high temperatures. Microencapsulated phase change materials containing 0 wt%, 1 wt%, 2 wt%, and 3 wt% GO had an excellent ability to reduce the charging temperature of smartphones, which could reduce the peak charging temperature of smartphones by 2.9, 3.1, 2.7, and 2.5 ℃, respectively. Microcapsules containing 1 wt% GO had a large enthalpy of phase transition and high thermal conductivity, which could most effectively reduce the peak charging temperature of the smartphone. Therefore, microcapsules with 1 wt% GO were the optimal microcapsules for the thermal management of smartphone charging.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Thermal Engineering
Applied Thermal Engineering 工程技术-工程:机械
CiteScore
11.30
自引率
15.60%
发文量
1474
审稿时长
57 days
期刊介绍: Applied Thermal Engineering disseminates novel research related to the design, development and demonstration of components, devices, equipment, technologies and systems involving thermal processes for the production, storage, utilization and conservation of energy, with a focus on engineering application. The journal publishes high-quality and high-impact Original Research Articles, Review Articles, Short Communications and Letters to the Editor on cutting-edge innovations in research, and recent advances or issues of interest to the thermal engineering community.
期刊最新文献
Thermodynamic analysis of a modified transcritical CO2 two-stage compression dual-temperature refrigeration cycle with an ejector Synthesis and optimization of GO/TiO2@n-octadecane microcapsules for thermal management of smartphone charging Large eddy simulations of the turbine vane pressure side film cooling flows of cylindrical and fan-shaped holes with a saw-tooth plasma actuator Optimization of water supply parameters for enhanced thermal uniformity in aquaculture ponds under varied working conditions: An experimental study Influence of corrugated jet plates on internal heat transfer and flow dynamics of double-wall cooling: experimental-numerical approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1