RL-based mobile edge computing scheme for high reliability low latency services in UAV-aided IIoT networks

IF 4.4 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Ad Hoc Networks Pub Date : 2024-09-12 DOI:10.1016/j.adhoc.2024.103646
{"title":"RL-based mobile edge computing scheme for high reliability low latency services in UAV-aided IIoT networks","authors":"","doi":"10.1016/j.adhoc.2024.103646","DOIUrl":null,"url":null,"abstract":"<div><p>The prevailing adoption of Internet of Things paradigm is giving rise to a wide range of use cases in various vertical industries including remote health, industrial automation, and smart agriculture. However, the realization of such use cases is mainly challenged due to their stringent service requirements of high reliability and low latency. This challenge grows further when the service entails processing collected data for informed decision making. In this work, we consider a field of industrial Internet of Things devices that generate computational tasks and are covered by a nearby base station equipped with an edge server. The edge server offers fast processing to the devices’ tasks to help in meeting their latency requirement. Due to statistical wireless variability, the task data may not be correctly delivered in time for processing. To this end, we utilize an unmanned aerial vehicle as a supplemental edge server that tailors its trajectory and flies closer to the IIoT devices to ensure a highly reliable task delivery based on the given task reliability constraints. We formulate the problem as a Markov Decision Process, and propose a deep reinforcement learning-based approach using proximal policy optimization to optimize the unmanned aerial vehicle trajectory and scheduling devices to offload their data for processing. We present simulation results for various system scenarios to illustrate the effectiveness of the proposed solution as compared to several baseline approaches.</p></div>","PeriodicalId":55555,"journal":{"name":"Ad Hoc Networks","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ad Hoc Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570870524002579","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The prevailing adoption of Internet of Things paradigm is giving rise to a wide range of use cases in various vertical industries including remote health, industrial automation, and smart agriculture. However, the realization of such use cases is mainly challenged due to their stringent service requirements of high reliability and low latency. This challenge grows further when the service entails processing collected data for informed decision making. In this work, we consider a field of industrial Internet of Things devices that generate computational tasks and are covered by a nearby base station equipped with an edge server. The edge server offers fast processing to the devices’ tasks to help in meeting their latency requirement. Due to statistical wireless variability, the task data may not be correctly delivered in time for processing. To this end, we utilize an unmanned aerial vehicle as a supplemental edge server that tailors its trajectory and flies closer to the IIoT devices to ensure a highly reliable task delivery based on the given task reliability constraints. We formulate the problem as a Markov Decision Process, and propose a deep reinforcement learning-based approach using proximal policy optimization to optimize the unmanned aerial vehicle trajectory and scheduling devices to offload their data for processing. We present simulation results for various system scenarios to illustrate the effectiveness of the proposed solution as compared to several baseline approaches.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于 RL 的移动边缘计算方案,为无人机辅助的 IIoT 网络提供高可靠性低延迟服务
物联网范例的普遍采用正在催生各种垂直行业的广泛用例,包括远程医疗、工业自动化和智能农业。然而,这些用例的实现主要面临着高可靠性和低延迟的严格服务要求。当服务需要处理收集到的数据以做出明智决策时,这一挑战就会进一步加大。在这项工作中,我们考虑了工业物联网设备领域,这些设备会产生计算任务,并由附近配备边缘服务器的基站覆盖。边缘服务器为设备任务提供快速处理,以帮助满足其延迟要求。由于统计上的无线变异性,任务数据可能无法及时正确交付处理。为此,我们利用无人驾驶飞行器作为补充边缘服务器,调整其飞行轨迹并飞近 IIoT 设备,以确保在给定任务可靠性约束的基础上实现高可靠性的任务交付。我们将该问题表述为马尔可夫决策过程,并提出了一种基于深度强化学习的方法,利用近端策略优化来优化无人飞行器的轨迹,并调度设备卸载其数据以进行处理。我们展示了各种系统场景的仿真结果,以说明与几种基线方法相比,所提解决方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ad Hoc Networks
Ad Hoc Networks 工程技术-电信学
CiteScore
10.20
自引率
4.20%
发文量
131
审稿时长
4.8 months
期刊介绍: The Ad Hoc Networks is an international and archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in ad hoc and sensor networking areas. The Ad Hoc Networks considers original, high quality and unpublished contributions addressing all aspects of ad hoc and sensor networks. Specific areas of interest include, but are not limited to: Mobile and Wireless Ad Hoc Networks Sensor Networks Wireless Local and Personal Area Networks Home Networks Ad Hoc Networks of Autonomous Intelligent Systems Novel Architectures for Ad Hoc and Sensor Networks Self-organizing Network Architectures and Protocols Transport Layer Protocols Routing protocols (unicast, multicast, geocast, etc.) Media Access Control Techniques Error Control Schemes Power-Aware, Low-Power and Energy-Efficient Designs Synchronization and Scheduling Issues Mobility Management Mobility-Tolerant Communication Protocols Location Tracking and Location-based Services Resource and Information Management Security and Fault-Tolerance Issues Hardware and Software Platforms, Systems, and Testbeds Experimental and Prototype Results Quality-of-Service Issues Cross-Layer Interactions Scalability Issues Performance Analysis and Simulation of Protocols.
期刊最新文献
TAVA: Traceable anonymity-self-controllable V2X Authentication over dynamic multiple charging-service providers RL-based mobile edge computing scheme for high reliability low latency services in UAV-aided IIoT networks Editorial Board PLLM-CS: Pre-trained Large Language Model (LLM) for cyber threat detection in satellite networks A two-context-aware approach for navigation: A case study for vehicular route recommendation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1