Svetlana Avramov-Zamurovic , Vasanthi Sivaprakasam , Matthew B. Hart , John E. McCarthy
{"title":"Laser beam carrying orbital angular momentum scattering from a particle: Near-field intensity and phase numerical study","authors":"Svetlana Avramov-Zamurovic , Vasanthi Sivaprakasam , Matthew B. Hart , John E. McCarthy","doi":"10.1016/j.jqsrt.2024.109192","DOIUrl":null,"url":null,"abstract":"<div><p>The interaction of the light carrying orbital angular momentum (OAM) with a single spherical particle is explored using a commercial multi-physics simulation platform. The scattering of light with wavelength of 0.532 µm from an ice particle is presented. The research focuses on studying the light-matter interface within an observation volume of radius 10 times the wavelength (5.32 µm) and present near-field magnitude and phase of the scattered field. We place the particle at the various locations of a Gaussian beam, as well as move it to through the vortex and annulus of the light that carries OAM with topological charges of 1, 2 and 3. The numerical solutions showcase the variations of the scattering field complex values and provide a valuable insight in the field behaviour near and inside the particle for different illumination. We show two and three-dimensional scattering field magnitude and phase spatial distributions and their correlations.</p></div>","PeriodicalId":16935,"journal":{"name":"Journal of Quantitative Spectroscopy & Radiative Transfer","volume":"329 ","pages":"Article 109192"},"PeriodicalIF":2.3000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022407324002991/pdfft?md5=c4e23b77a0ca9ce81c939d92aaaa6fad&pid=1-s2.0-S0022407324002991-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Quantitative Spectroscopy & Radiative Transfer","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022407324002991","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
The interaction of the light carrying orbital angular momentum (OAM) with a single spherical particle is explored using a commercial multi-physics simulation platform. The scattering of light with wavelength of 0.532 µm from an ice particle is presented. The research focuses on studying the light-matter interface within an observation volume of radius 10 times the wavelength (5.32 µm) and present near-field magnitude and phase of the scattered field. We place the particle at the various locations of a Gaussian beam, as well as move it to through the vortex and annulus of the light that carries OAM with topological charges of 1, 2 and 3. The numerical solutions showcase the variations of the scattering field complex values and provide a valuable insight in the field behaviour near and inside the particle for different illumination. We show two and three-dimensional scattering field magnitude and phase spatial distributions and their correlations.
期刊介绍:
Papers with the following subject areas are suitable for publication in the Journal of Quantitative Spectroscopy and Radiative Transfer:
- Theoretical and experimental aspects of the spectra of atoms, molecules, ions, and plasmas.
- Spectral lineshape studies including models and computational algorithms.
- Atmospheric spectroscopy.
- Theoretical and experimental aspects of light scattering.
- Application of light scattering in particle characterization and remote sensing.
- Application of light scattering in biological sciences and medicine.
- Radiative transfer in absorbing, emitting, and scattering media.
- Radiative transfer in stochastic media.