{"title":"Self-consistent solution of the Frank–Bilby equation for interfaces containing disconnections","authors":"David B. Gordon, Ryan B. Sills","doi":"10.1016/j.jmps.2024.105845","DOIUrl":null,"url":null,"abstract":"<div><p>The quantized Frank–Bilby equation can be used to identify interfacial line defect array configurations which relax the misorientation and/or misfit of a coherent crystalline interface. These line defect arrays may be comprised of dislocations and/or disconnections, which are interfacial steps with dislocation character. When an interface contains disconnections, solution of the quantized Frank–Bilby equation is complicated by the fact that the habit plane orientation is not known in advance because it depends on the unknown spacing of the disconnection array. We present a root-finding-based method for addressing this issue, enabling a self-consistent solution for arbitrary defect content. Our method has been implemented in an open-source code which enumerates all possible solutions given a list of candidate line defects. Two cases are presented employing the code: a misoriented FCC twin boundary and an FCC/BCC phase boundary with the Nishiyama-Wasserman orientation relationship. Both cases exhibit more than 10,000 solutions to the Frank–Bilby equation, with several hundred solutions categorized as “low energy” and thus plausible configurations for the actual interface. The resulting set of solutions can be utilized to predict and understand the properties of a given interface.</p></div>","PeriodicalId":17331,"journal":{"name":"Journal of The Mechanics and Physics of Solids","volume":"193 ","pages":"Article 105845"},"PeriodicalIF":5.0000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022509624003119/pdfft?md5=5e3a5c54a570c8e21020d022435478f9&pid=1-s2.0-S0022509624003119-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Mechanics and Physics of Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022509624003119","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The quantized Frank–Bilby equation can be used to identify interfacial line defect array configurations which relax the misorientation and/or misfit of a coherent crystalline interface. These line defect arrays may be comprised of dislocations and/or disconnections, which are interfacial steps with dislocation character. When an interface contains disconnections, solution of the quantized Frank–Bilby equation is complicated by the fact that the habit plane orientation is not known in advance because it depends on the unknown spacing of the disconnection array. We present a root-finding-based method for addressing this issue, enabling a self-consistent solution for arbitrary defect content. Our method has been implemented in an open-source code which enumerates all possible solutions given a list of candidate line defects. Two cases are presented employing the code: a misoriented FCC twin boundary and an FCC/BCC phase boundary with the Nishiyama-Wasserman orientation relationship. Both cases exhibit more than 10,000 solutions to the Frank–Bilby equation, with several hundred solutions categorized as “low energy” and thus plausible configurations for the actual interface. The resulting set of solutions can be utilized to predict and understand the properties of a given interface.
期刊介绍:
The aim of Journal of The Mechanics and Physics of Solids is to publish research of the highest quality and of lasting significance on the mechanics of solids. The scope is broad, from fundamental concepts in mechanics to the analysis of novel phenomena and applications. Solids are interpreted broadly to include both hard and soft materials as well as natural and synthetic structures. The approach can be theoretical, experimental or computational.This research activity sits within engineering science and the allied areas of applied mathematics, materials science, bio-mechanics, applied physics, and geophysics.
The Journal was founded in 1952 by Rodney Hill, who was its Editor-in-Chief until 1968. The topics of interest to the Journal evolve with developments in the subject but its basic ethos remains the same: to publish research of the highest quality relating to the mechanics of solids. Thus, emphasis is placed on the development of fundamental concepts of mechanics and novel applications of these concepts based on theoretical, experimental or computational approaches, drawing upon the various branches of engineering science and the allied areas within applied mathematics, materials science, structural engineering, applied physics, and geophysics.
The main purpose of the Journal is to foster scientific understanding of the processes of deformation and mechanical failure of all solid materials, both technological and natural, and the connections between these processes and their underlying physical mechanisms. In this sense, the content of the Journal should reflect the current state of the discipline in analysis, experimental observation, and numerical simulation. In the interest of achieving this goal, authors are encouraged to consider the significance of their contributions for the field of mechanics and the implications of their results, in addition to describing the details of their work.