Novel synthesis of vanadium phosphorus/ cerium promoted manganese oxide (VPO/Ce-OMS-2) nanocomposite as an efficient and selective catalyst for the aerobic oxidative coupling of benzyl alcohol and aniline to imine in the liquid phase
{"title":"Novel synthesis of vanadium phosphorus/ cerium promoted manganese oxide (VPO/Ce-OMS-2) nanocomposite as an efficient and selective catalyst for the aerobic oxidative coupling of benzyl alcohol and aniline to imine in the liquid phase","authors":"Elham Shahbazi , Vahid Mahdavi","doi":"10.1016/j.jorganchem.2024.123381","DOIUrl":null,"url":null,"abstract":"<div><p>In this investigation, the VPO/Ce-OMS-2 composite was synthesized via the mechanochemical method and it was employed for the synthesis of imine in the liquid phase through a two-step process of oxidation of benzyl alcohol and subsequent condensation with aniline using air as an oxidant. The composite was synthesized with different mass ratios of (1:1), (1.5:1), (2:1) and (2.5:1). The effect of the VPO/Ce-OMS-2 mass ratio on catalyst activity has been investigated. As the mass ratio increases from (1:1) to (2:1), the benzyl alcohol conversion gradually increases, reaching 93% at a (2:1) mass ratio. Among the synthesized samples, the VPO/Ce-OMS-2(2:1) composite exhibited the highest selectivity towards imine formation and conversion of benzyl alcohol. Various techniques, such as XRD, FT-IR, BET, FESEM, EDX, DRS, NH<sub>3</sub>-TPD, and HRTEM, were utilized to characterize the catalysts. Results indicated that the composite synthesized with a (2:1) mass ratio has a favorable surface area, a mixture of micro-meso structures, and a high number of acidic sites, as confirmed by BET-BJH and NH<sub>3</sub>-TPD techniques. The DRS analysis demonstrated that the interaction between the two catalysts, VPO and Ce-OMS-2, enhances the selectivity for the desired product. The results clearly show the synergism effect in the combination of components VPO and Ce-OMS-2 and improving the activity and selectivity of the synthesized nanocomposite. The effects of reaction temperature, reaction time, solvents, VPO/Ce-OMS-2 mass ratio, catalyst amount, and reusability were studied. Recycling results for the VPO/Ce-OMS-2(2:1) composite show that the benzyl alcohol conversion decreases slightly after five cycles of use, and its stability is almost maintained. Optimizing the reaction conditions (0.2 g catalyst, VPO/Ce-OMS-2 mass ratio (2:1), solvent toluene, reaction temperature 90°C, and t = 8 h) resulted in a 93% conversion of benzyl alcohol with complete selectivity for the imine.</p></div>","PeriodicalId":374,"journal":{"name":"Journal of Organometallic Chemistry","volume":"1022 ","pages":"Article 123381"},"PeriodicalIF":2.1000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Organometallic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022328X24003760","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
In this investigation, the VPO/Ce-OMS-2 composite was synthesized via the mechanochemical method and it was employed for the synthesis of imine in the liquid phase through a two-step process of oxidation of benzyl alcohol and subsequent condensation with aniline using air as an oxidant. The composite was synthesized with different mass ratios of (1:1), (1.5:1), (2:1) and (2.5:1). The effect of the VPO/Ce-OMS-2 mass ratio on catalyst activity has been investigated. As the mass ratio increases from (1:1) to (2:1), the benzyl alcohol conversion gradually increases, reaching 93% at a (2:1) mass ratio. Among the synthesized samples, the VPO/Ce-OMS-2(2:1) composite exhibited the highest selectivity towards imine formation and conversion of benzyl alcohol. Various techniques, such as XRD, FT-IR, BET, FESEM, EDX, DRS, NH3-TPD, and HRTEM, were utilized to characterize the catalysts. Results indicated that the composite synthesized with a (2:1) mass ratio has a favorable surface area, a mixture of micro-meso structures, and a high number of acidic sites, as confirmed by BET-BJH and NH3-TPD techniques. The DRS analysis demonstrated that the interaction between the two catalysts, VPO and Ce-OMS-2, enhances the selectivity for the desired product. The results clearly show the synergism effect in the combination of components VPO and Ce-OMS-2 and improving the activity and selectivity of the synthesized nanocomposite. The effects of reaction temperature, reaction time, solvents, VPO/Ce-OMS-2 mass ratio, catalyst amount, and reusability were studied. Recycling results for the VPO/Ce-OMS-2(2:1) composite show that the benzyl alcohol conversion decreases slightly after five cycles of use, and its stability is almost maintained. Optimizing the reaction conditions (0.2 g catalyst, VPO/Ce-OMS-2 mass ratio (2:1), solvent toluene, reaction temperature 90°C, and t = 8 h) resulted in a 93% conversion of benzyl alcohol with complete selectivity for the imine.
期刊介绍:
The Journal of Organometallic Chemistry targets original papers dealing with theoretical aspects, structural chemistry, synthesis, physical and chemical properties (including reaction mechanisms), and practical applications of organometallic compounds.
Organometallic compounds are defined as compounds that contain metal - carbon bonds. The term metal includes all alkali and alkaline earth metals, all transition metals and the lanthanides and actinides in the Periodic Table. Metalloids including the elements in Group 13 and the heavier members of the Groups 14 - 16 are also included. The term chemistry includes syntheses, characterizations and reaction chemistry of all such compounds. Research reports based on use of organometallic complexes in bioorganometallic chemistry, medicine, material sciences, homogeneous catalysis and energy conversion are also welcome.
The scope of the journal has been enlarged to encompass important research on organometallic complexes in bioorganometallic chemistry and material sciences, and of heavier main group elements in organometallic chemistry. The journal also publishes review articles, short communications and notes.