A new strain-based approach to investigate the size and geometry effects on fracture resistance of rocks

IF 5 2区 工程技术 Q1 ENGINEERING, MECHANICAL Theoretical and Applied Fracture Mechanics Pub Date : 2024-09-14 DOI:10.1016/j.tafmec.2024.104679
{"title":"A new strain-based approach to investigate the size and geometry effects on fracture resistance of rocks","authors":"","doi":"10.1016/j.tafmec.2024.104679","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, a new strain-based criterion is suggested for assessing the effects of size and geometry of specimen on the fracture resistance of rocks under mixed-mode (I/II) loading. The new approach named the modified maximum tangential strain (MMTSN) criterion is based on the classical maximum tangential strain (MTSN) criterion, in which the first non-singular term (<span><math><mi>T</mi></math></span>) of Williams series expansion is considered in addition to the singular terms (<span><math><mi>K</mi></math></span>). Furthermore, to provide more coherence, the critical distance (<span><math><msub><mi>r</mi><mi>c</mi></msub></math></span>) from the crack tip is defined according to a new strain-based failure model. Unlike similar strain-based fracture models available in the literature, the critical distance <span><math><msub><mi>r</mi><mi>c</mi></msub></math></span> in the MMTSN criterion is assumed to be size-dependent and a semi-empirical formulation is utilized for describing this size-dependency. To assess the ability of MMTSN for considering the size and geometry effects, the experimental data existing in the literature for a number of cracked Brazilian disk (CBD) and semi-circular bend (SCB) specimens manufactured from Guiting limestone are taken into account. It is demonstrated that the MMTSN criterion can predict the experimental data very well by taking into consideration the size and geometry effects without needing to calculate the other higher order terms.</p></div>","PeriodicalId":22879,"journal":{"name":"Theoretical and Applied Fracture Mechanics","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Fracture Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167844224004294","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a new strain-based criterion is suggested for assessing the effects of size and geometry of specimen on the fracture resistance of rocks under mixed-mode (I/II) loading. The new approach named the modified maximum tangential strain (MMTSN) criterion is based on the classical maximum tangential strain (MTSN) criterion, in which the first non-singular term (T) of Williams series expansion is considered in addition to the singular terms (K). Furthermore, to provide more coherence, the critical distance (rc) from the crack tip is defined according to a new strain-based failure model. Unlike similar strain-based fracture models available in the literature, the critical distance rc in the MMTSN criterion is assumed to be size-dependent and a semi-empirical formulation is utilized for describing this size-dependency. To assess the ability of MMTSN for considering the size and geometry effects, the experimental data existing in the literature for a number of cracked Brazilian disk (CBD) and semi-circular bend (SCB) specimens manufactured from Guiting limestone are taken into account. It is demonstrated that the MMTSN criterion can predict the experimental data very well by taking into consideration the size and geometry effects without needing to calculate the other higher order terms.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Theoretical and Applied Fracture Mechanics
Theoretical and Applied Fracture Mechanics 工程技术-工程:机械
CiteScore
8.40
自引率
18.90%
发文量
435
审稿时长
37 days
期刊介绍: Theoretical and Applied Fracture Mechanics'' aims & scopes have been re-designed to cover both the theoretical, applied, and numerical aspects associated with those cracking related phenomena taking place, at a micro-, meso-, and macroscopic level, in materials/components/structures of any kind. The journal aims to cover the cracking/mechanical behaviour of materials/components/structures in those situations involving both time-independent and time-dependent system of external forces/moments (such as, for instance, quasi-static, impulsive, impact, blasting, creep, contact, and fatigue loading). Since, under the above circumstances, the mechanical behaviour of cracked materials/components/structures is also affected by the environmental conditions, the journal would consider also those theoretical/experimental research works investigating the effect of external variables such as, for instance, the effect of corrosive environments as well as of high/low-temperature.
期刊最新文献
Mean stress effect on crack propagation threshold at high stress ratios Compression-induced failure characteristics of brittle flawed rocks: Mechanical confinement-dependency Fracture toughness and fatigue crack growth in DMLS Co-Cr-Mo alloy: Unraveling the role of scanning strategies A new strain-based approach to investigate the size and geometry effects on fracture resistance of rocks Microstructure – Fracture toughness relationship in a sub-zero treated 0.9C-7.8Cr sub-ledeburitic tool steel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1