Photoinduced polymerization of acrylates with polybenzoxazine macroinitiators for polyacrylate/polybenzoxazine networks

IF 4.5 3区 工程技术 Q1 CHEMISTRY, APPLIED Reactive & Functional Polymers Pub Date : 2024-09-12 DOI:10.1016/j.reactfunctpolym.2024.106054
Dilara Onen, Fusun Seyma Gungor, Baris Kiskan
{"title":"Photoinduced polymerization of acrylates with polybenzoxazine macroinitiators for polyacrylate/polybenzoxazine networks","authors":"Dilara Onen,&nbsp;Fusun Seyma Gungor,&nbsp;Baris Kiskan","doi":"10.1016/j.reactfunctpolym.2024.106054","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we synthesized benzophenone-based main chain polybenzoxazine (BP-PBz) as a type II macroinitiator and this initiator was used to synthesize acrylate-based polybenzoxazine copolymers. BP-PBz effectively initiated the polymerization of methyl methacrylate (MMA) and poly(ethylene glycol) diacrylate (PEGDA), resulting in either polybenzoxazine-<em>grafted</em>-poly(MMA) or crosslinked polybenzoxazine networks. Polymerizations of the formulations were performed upon photolysis at <em>ca.</em> 300 nm. The obtained polymers retained their oxazine functionality and subsequent thermal curing was applied successfully at relatively lower temperatures than conventional benzoxazines. The precursors are shown to have a dual curable character that could be beneficial for deep curing purposes. The synthesized polymers were characterized using various techniques, including nuclear magnetic resonance (NMR), Fourier-transform infrared (FT-IR), ultraviolet-visible (UV–Vis) spectroscopy, and thermogravimetric analysis (TGA), along with differential scanning calorimetry (DSC).</p></div>","PeriodicalId":20916,"journal":{"name":"Reactive & Functional Polymers","volume":"205 ","pages":"Article 106054"},"PeriodicalIF":4.5000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reactive & Functional Polymers","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1381514824002293","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we synthesized benzophenone-based main chain polybenzoxazine (BP-PBz) as a type II macroinitiator and this initiator was used to synthesize acrylate-based polybenzoxazine copolymers. BP-PBz effectively initiated the polymerization of methyl methacrylate (MMA) and poly(ethylene glycol) diacrylate (PEGDA), resulting in either polybenzoxazine-grafted-poly(MMA) or crosslinked polybenzoxazine networks. Polymerizations of the formulations were performed upon photolysis at ca. 300 nm. The obtained polymers retained their oxazine functionality and subsequent thermal curing was applied successfully at relatively lower temperatures than conventional benzoxazines. The precursors are shown to have a dual curable character that could be beneficial for deep curing purposes. The synthesized polymers were characterized using various techniques, including nuclear magnetic resonance (NMR), Fourier-transform infrared (FT-IR), ultraviolet-visible (UV–Vis) spectroscopy, and thermogravimetric analysis (TGA), along with differential scanning calorimetry (DSC).

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
丙烯酸酯与聚苯并噁嗪大引发剂的光诱导聚合,用于聚丙烯酸酯/聚苯并噁嗪网络
在这项研究中,我们合成了二苯甲酮基主链聚苯并恶嗪(BP-PBz)作为 II 型大引发剂,并用这种引发剂合成了丙烯酸酯基聚苯并恶嗪共聚物。BP-PBz 能有效引发甲基丙烯酸甲酯(MMA)和聚乙二醇二丙烯酸酯(PEGDA)的聚合,从而生成聚苯并恶嗪接枝聚(MMA)或交联聚苯并恶嗪网络。这些配方在约 300 纳米波长的光解条件下进行聚合。300 纳米处进行聚合。与传统的苯并恶嗪相比,所获得的聚合物保留了其恶嗪官能团,并在相对较低的温度下成功地进行了后续热固化。这些前体具有双重固化特性,有利于深度固化。合成聚合物的表征采用了多种技术,包括核磁共振(NMR)、傅立叶变换红外光谱(FT-IR)、紫外可见光谱(UV-Vis)、热重分析(TGA)以及差示扫描量热法(DSC)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Reactive & Functional Polymers
Reactive & Functional Polymers 工程技术-高分子科学
CiteScore
8.90
自引率
5.90%
发文量
259
审稿时长
27 days
期刊介绍: Reactive & Functional Polymers provides a forum to disseminate original ideas, concepts and developments in the science and technology of polymers with functional groups, which impart specific chemical reactivity or physical, chemical, structural, biological, and pharmacological functionality. The scope covers organic polymers, acting for instance as reagents, catalysts, templates, ion-exchangers, selective sorbents, chelating or antimicrobial agents, drug carriers, sensors, membranes, and hydrogels. This also includes reactive cross-linkable prepolymers and high-performance thermosetting polymers, natural or degradable polymers, conducting polymers, and porous polymers. Original research articles must contain thorough molecular and material characterization data on synthesis of the above polymers in combination with their applications. Applications include but are not limited to catalysis, water or effluent treatment, separations and recovery, electronics and information storage, energy conversion, encapsulation, or adhesion.
期刊最新文献
Flame retardant polymethyl methacrylate toughened by a phosphorus-containing vitrimer Improving the stability and digestive property of Bifidobacterium bifidum encapsulated in whey protein isolate/pectin emulsions Radical inhibition in tomographic volumetric 3D printing for thiol-Ene photoresists: From Photorheology to printability Shape memory, reprocessable and photothermal networks of polyurethane with silyl ether bonds and croconaine segments Use of a hydrosilylation reaction for the preparation of structure-controlled boroxine-based polyborosiloxanes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1