Synthesization and characterizations of coal fly ash-coffee grounds-based composite as super-absorbent for application in soil

IF 9.7 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL Journal of Cleaner Production Pub Date : 2024-09-06 DOI:10.1016/j.jclepro.2024.143568
{"title":"Synthesization and characterizations of coal fly ash-coffee grounds-based composite as super-absorbent for application in soil","authors":"","doi":"10.1016/j.jclepro.2024.143568","DOIUrl":null,"url":null,"abstract":"<div><p>To recycle and utilize two types of harmful solid waste, coffee grounds (CG) and coal fly ash (CFA), a novel and low-cost superabsorbent composite (MCG-PAA/CFA) was synthesized by aqueous solution polymerization with modified coffee grounds (MCG), acrylic acid (AA) and CFA as raw materials, and it was applied to soil to improve its drought resistance. Various reaction conditions were comprehensively investigated and analyzed to assess their influence on the water absorbency of the superabsorbent composite (SAC). After optimization, the MCG-PAA/CFA exhibited water absorbency capacities of 1260(±10.6) g/g and 82(±1.4) g/g in deionized water and physiological saline, respectively. After adding 3 wt% MCG, the water absorption of SAC was improved from 415 to 746 g/g. After further introduction of 2 wt% CFA, the water absorption of SAC increased from 746 to 1260 g/g. Fourier Transform Infrared (FTIR) analysis confirmed that the grafting reaction was successful and that CFA participated in the reaction, while scanning electron microscope (SEM) and thermogravimetric analysis (TGA) results revealed that the grafting reaction and the introduction of CFA improved the surface morphology and thermal stability of the SAC. Kinetic analysis was conducted to investigate how the grafting reaction and the introduction of CFA affected the swelling and water retention kinetics of the superabsorbent composite. In the soil experiment, adding only 0.1 wt% MCG-PAA/CFA can improve the water holding capacity of sandy soil, loam soil and clay soil by 6.65%, 4.42%, and 3.76% respectively This SAC composite has great potential in soil drought resistance.</p></div>","PeriodicalId":349,"journal":{"name":"Journal of Cleaner Production","volume":null,"pages":null},"PeriodicalIF":9.7000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cleaner Production","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959652624030178","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

To recycle and utilize two types of harmful solid waste, coffee grounds (CG) and coal fly ash (CFA), a novel and low-cost superabsorbent composite (MCG-PAA/CFA) was synthesized by aqueous solution polymerization with modified coffee grounds (MCG), acrylic acid (AA) and CFA as raw materials, and it was applied to soil to improve its drought resistance. Various reaction conditions were comprehensively investigated and analyzed to assess their influence on the water absorbency of the superabsorbent composite (SAC). After optimization, the MCG-PAA/CFA exhibited water absorbency capacities of 1260(±10.6) g/g and 82(±1.4) g/g in deionized water and physiological saline, respectively. After adding 3 wt% MCG, the water absorption of SAC was improved from 415 to 746 g/g. After further introduction of 2 wt% CFA, the water absorption of SAC increased from 746 to 1260 g/g. Fourier Transform Infrared (FTIR) analysis confirmed that the grafting reaction was successful and that CFA participated in the reaction, while scanning electron microscope (SEM) and thermogravimetric analysis (TGA) results revealed that the grafting reaction and the introduction of CFA improved the surface morphology and thermal stability of the SAC. Kinetic analysis was conducted to investigate how the grafting reaction and the introduction of CFA affected the swelling and water retention kinetics of the superabsorbent composite. In the soil experiment, adding only 0.1 wt% MCG-PAA/CFA can improve the water holding capacity of sandy soil, loam soil and clay soil by 6.65%, 4.42%, and 3.76% respectively This SAC composite has great potential in soil drought resistance.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Cleaner Production
Journal of Cleaner Production 环境科学-工程:环境
CiteScore
20.40
自引率
9.00%
发文量
4720
审稿时长
111 days
期刊介绍: The Journal of Cleaner Production is an international, transdisciplinary journal that addresses and discusses theoretical and practical Cleaner Production, Environmental, and Sustainability issues. It aims to help societies become more sustainable by focusing on the concept of 'Cleaner Production', which aims at preventing waste production and increasing efficiencies in energy, water, resources, and human capital use. The journal serves as a platform for corporations, governments, education institutions, regions, and societies to engage in discussions and research related to Cleaner Production, environmental, and sustainability practices.
期刊最新文献
New role of radical-induced polymerization: Base/self-heating synergistically activate persulfate to boost food waste humification Impacts of alternative fuel combustion in cement manufacturing: Life cycle greenhouse gas, biogenic carbon, and criteria air contaminant emissions Two decades of stakeholder voices: Exploring engagement in Romania's FSC forest management certification Sustainability assessment in waste management: An exploratory study of the social perspective in waste-to-energy cases An eco-friendly droplet-wet spinning technology for producing high-quality hemp/cotton blend yarn
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1