Prof. Roelof J. Kriek, Dr. Oluwaseun A. Oyetade, Dr. Nyengerai H. Zingwe, Prof. Emanuela Carleschi, Prof. Bryan P. Doyle, Dr. Jaco Koch
{"title":"Photo-induced Intercalation of Cobalt(II) Tellurium Oxide as an Oxygen Evolution (Photo)electrocatalyst","authors":"Prof. Roelof J. Kriek, Dr. Oluwaseun A. Oyetade, Dr. Nyengerai H. Zingwe, Prof. Emanuela Carleschi, Prof. Bryan P. Doyle, Dr. Jaco Koch","doi":"10.1002/celc.202481802","DOIUrl":null,"url":null,"abstract":"<p>The inside cover picture highlights the ability of cobalt(II) tellurium oxide (CTO) to intercalate electrolytic potassium ions upon photo-induced charge separation, thereby stabilising the excited electron, whilst also driving the oxygen evolution reaction by oxidising hydroxide ions. It is shown that the photo-electrocatalytic (PEC) current is about double that of the electrocatalytic (EC) current while the EC current, subsequent to the termination of illumination, is almost as high as the PEC current. This exhibits the ability of CTO to deintercalate and release charge after the termination of illumination. More details can be found in the Research Article by Roelof Jacobus Kriek and co-workers (DOI: 10.1002/celc.202400047).\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure>\n </p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"11 18","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202481802","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemElectroChem","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/celc.202481802","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
The inside cover picture highlights the ability of cobalt(II) tellurium oxide (CTO) to intercalate electrolytic potassium ions upon photo-induced charge separation, thereby stabilising the excited electron, whilst also driving the oxygen evolution reaction by oxidising hydroxide ions. It is shown that the photo-electrocatalytic (PEC) current is about double that of the electrocatalytic (EC) current while the EC current, subsequent to the termination of illumination, is almost as high as the PEC current. This exhibits the ability of CTO to deintercalate and release charge after the termination of illumination. More details can be found in the Research Article by Roelof Jacobus Kriek and co-workers (DOI: 10.1002/celc.202400047).
期刊介绍:
ChemElectroChem is aimed to become a top-ranking electrochemistry journal for primary research papers and critical secondary information from authors across the world. The journal covers the entire scope of pure and applied electrochemistry, the latter encompassing (among others) energy applications, electrochemistry at interfaces (including surfaces), photoelectrochemistry and bioelectrochemistry.