{"title":"Alloy Catalysts for Electrochemical Nitrate Reduction to Ammonia","authors":"Rong Zhang, Xintao Ma, Shaoce Zhang, Qing Li, Yuwei Zhao, Chunyi Zhi","doi":"10.1002/celc.202400499","DOIUrl":null,"url":null,"abstract":"<p>Electrochemical nitrate reduction reaction (NO<sub>3</sub><sup>−</sup>RR) represents a promising ammonia (NH<sub>3</sub>) production approach and has garnered significant attention in recent years. Owing to the highly tunable electronic structures and physicochemical properties, alloy materials have emerged as highly efficient catalysts for electrochemical NO<sub>3</sub><sup>−</sup>RR. This review systematically examines the recent advancements in alloy catalysts including binary alloys and multi-metal alloys for electrochemical NO<sub>3</sub><sup>−</sup>RR, comprehensively analyzing their structure, catalytic activity, and the mechanisms for NO<sub>3</sub><sup>−</sup>RR. In addition, the relationship between alloy catalysts′ composition, active sites, and catalytic activity are described, aiming to elucidate the underlying principles for high catalytic activity and guide the rational design of future alloy catalysts. Finally, this review addresses the challenges of alloy catalysts and proposes directions for future research and development.</p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"12 4","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202400499","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemElectroChem","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/celc.202400499","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Electrochemical nitrate reduction reaction (NO3−RR) represents a promising ammonia (NH3) production approach and has garnered significant attention in recent years. Owing to the highly tunable electronic structures and physicochemical properties, alloy materials have emerged as highly efficient catalysts for electrochemical NO3−RR. This review systematically examines the recent advancements in alloy catalysts including binary alloys and multi-metal alloys for electrochemical NO3−RR, comprehensively analyzing their structure, catalytic activity, and the mechanisms for NO3−RR. In addition, the relationship between alloy catalysts′ composition, active sites, and catalytic activity are described, aiming to elucidate the underlying principles for high catalytic activity and guide the rational design of future alloy catalysts. Finally, this review addresses the challenges of alloy catalysts and proposes directions for future research and development.
期刊介绍:
ChemElectroChem is aimed to become a top-ranking electrochemistry journal for primary research papers and critical secondary information from authors across the world. The journal covers the entire scope of pure and applied electrochemistry, the latter encompassing (among others) energy applications, electrochemistry at interfaces (including surfaces), photoelectrochemistry and bioelectrochemistry.