Theresa Boas, Heye Bogena, Dongryeol Ryu, Andrew Western, Harrie-Jan Hendricks Franssen
{"title":"Multi-Decadal Soil Moisture and Crop Yield Variability—A Case Study With the Community Land Model (CLM5)","authors":"Theresa Boas, Heye Bogena, Dongryeol Ryu, Andrew Western, Harrie-Jan Hendricks Franssen","doi":"10.1029/2023MS004023","DOIUrl":null,"url":null,"abstract":"<p>While the impacts of climate change on global food security have been studied extensively, the capability of emerging tools that couple land surface processes and crop growth in reproducing inter-annual yield variability at regional scale remains to be tested rigorously. In this study, we analyzed the effects of weather variations between years (1999–2019) on regional crop productivity for two agriculturally managed regions with contrasting climate and cropping conditions: the German state of North Rhine-Westphalia (DE-NRW) and the Australian state of Victoria (AUS-VIC), using the latest version of the Community Land Model (CLM5) and the WFDE5 (WATCH Forcing Data methodology applied to ECMWF reanalysis version 5) reanalysis. Overall, the simulation results were able to reproduce the total annual crop yields of certain crops, while also capturing the differences in total yield magnitudes between the domains. However, the simulations showed limitations in correctly capturing inter-annual differences of crop yield compared to official yield records, which resulted in relatively low correlation coefficients between 0.07 and 0.39 in AUS-VIC and between 0.11 and 0.42 in DE-NRW. The mean absolute deviation of simulated winter wheat yields was up to 4.6 times lower compared to state-wide records from 1999 to 2019. Our results suggest the following limitations of CLM5: (a) limitations in simulating yield responses from plant hydraulic stress; (b) errors in simulating soil moisture contents compared to satellite-derived data; and (c) errors in the representation of cropland in general, for example, crop parameterizations and human influences.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":"16 9","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023MS004023","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Modeling Earth Systems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023MS004023","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
While the impacts of climate change on global food security have been studied extensively, the capability of emerging tools that couple land surface processes and crop growth in reproducing inter-annual yield variability at regional scale remains to be tested rigorously. In this study, we analyzed the effects of weather variations between years (1999–2019) on regional crop productivity for two agriculturally managed regions with contrasting climate and cropping conditions: the German state of North Rhine-Westphalia (DE-NRW) and the Australian state of Victoria (AUS-VIC), using the latest version of the Community Land Model (CLM5) and the WFDE5 (WATCH Forcing Data methodology applied to ECMWF reanalysis version 5) reanalysis. Overall, the simulation results were able to reproduce the total annual crop yields of certain crops, while also capturing the differences in total yield magnitudes between the domains. However, the simulations showed limitations in correctly capturing inter-annual differences of crop yield compared to official yield records, which resulted in relatively low correlation coefficients between 0.07 and 0.39 in AUS-VIC and between 0.11 and 0.42 in DE-NRW. The mean absolute deviation of simulated winter wheat yields was up to 4.6 times lower compared to state-wide records from 1999 to 2019. Our results suggest the following limitations of CLM5: (a) limitations in simulating yield responses from plant hydraulic stress; (b) errors in simulating soil moisture contents compared to satellite-derived data; and (c) errors in the representation of cropland in general, for example, crop parameterizations and human influences.
期刊介绍:
The Journal of Advances in Modeling Earth Systems (JAMES) is committed to advancing the science of Earth systems modeling by offering high-quality scientific research through online availability and open access licensing. JAMES invites authors and readers from the international Earth systems modeling community.
Open access. Articles are available free of charge for everyone with Internet access to view and download.
Formal peer review.
Supplemental material, such as code samples, images, and visualizations, is published at no additional charge.
No additional charge for color figures.
Modest page charges to cover production costs.
Articles published in high-quality full text PDF, HTML, and XML.
Internal and external reference linking, DOI registration, and forward linking via CrossRef.