{"title":"Nonlinear creep consolidation of vertical drain-improved soft ground with time-dependent permeable boundary under linearly construction load","authors":"","doi":"10.1016/j.geotexmem.2024.09.001","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents an upgraded nonlinear creep consolidation model for VDI soft ground, incorporating a modified UH relation to capture soil creep deformation. Key novelties also include considering linear construction loads, TDP boundary conditions, and Swartzendruber's flow in the small strain consolidation domain. The system was solved using the implicit finite difference method, and numerical solutions were rigorously validated. A parametric analysis reveals that soil viscosity causes abnormal EPP increases under poor drainage conditions during early consolidation. Meanwhile, neglecting the time effect of the secondary consolidation coefficient delayed the overall EPP dissipation process and overestimated the settlement during the middle and late consolidation stages. Furthermore, TDP boundaries, Swartzendruber's flow, and construction processes significantly influence the creep consolidation process but not the final settlement. These findings offer fresh insights into the nonlinear creep consolidation of VDI soft ground, advancing the field.</p></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geotextiles and Geomembranes","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266114424000979","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents an upgraded nonlinear creep consolidation model for VDI soft ground, incorporating a modified UH relation to capture soil creep deformation. Key novelties also include considering linear construction loads, TDP boundary conditions, and Swartzendruber's flow in the small strain consolidation domain. The system was solved using the implicit finite difference method, and numerical solutions were rigorously validated. A parametric analysis reveals that soil viscosity causes abnormal EPP increases under poor drainage conditions during early consolidation. Meanwhile, neglecting the time effect of the secondary consolidation coefficient delayed the overall EPP dissipation process and overestimated the settlement during the middle and late consolidation stages. Furthermore, TDP boundaries, Swartzendruber's flow, and construction processes significantly influence the creep consolidation process but not the final settlement. These findings offer fresh insights into the nonlinear creep consolidation of VDI soft ground, advancing the field.
期刊介绍:
The range of products and their applications has expanded rapidly over the last decade with geotextiles and geomembranes being specified world wide. This rapid growth is paralleled by a virtual explosion of technology. Current reference books and even manufacturers' sponsored publications tend to date very quickly and the need for a vehicle to bring together and discuss the growing body of technology now available has become evident.
Geotextiles and Geomembranes fills this need and provides a forum for the dissemination of information amongst research workers, designers, users and manufacturers. By providing a growing fund of information the journal increases general awareness, prompts further research and assists in the establishment of international codes and regulations.