Detection prospects of very and ultra high-energy gamma rays from extended sources with ASTRI, CTA, and LHAASO

IF 5.4 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Astronomy & Astrophysics Pub Date : 2024-09-18 DOI:10.1051/0004-6361/202449837
S. Celli, G. Peron
{"title":"Detection prospects of very and ultra high-energy gamma rays from extended sources with ASTRI, CTA, and LHAASO","authors":"S. Celli, G. Peron","doi":"10.1051/0004-6361/202449837","DOIUrl":null,"url":null,"abstract":"<i>Context<i/>. The recent discovery of several ultra high-energy gamma-ray emitters in our Galaxy represents a significant advancement towards the characterisation of its most powerful accelerators. Nonetheless, in order to unambiguously locate the regions where the highest energy particles are produced and understand the responsible physical mechanisms, detailed spectral and morphological studies are required, especially given that most of the observed sources were found to be significantly extended.<i>Aims<i/>. In these regards, pointing observations with the next-generation Imaging Atmospheric Cherenkov Telescopes, such as the Cherenkov Telescope Array (CTA) Observatory and the ASTRI Mini-Array (ASTRI), are expected to provide significant improvements. Here we aim to identify the most promising sources to target in future observations.<i>Methods<i/>. For this purpose, we performed a comparative analysis of the expected performance of ASTRI and CTA, computing their differential sensitivities towards extended sources, and further explored their capabilities with respect to specific case studies, including follow-ups of existing gamma-ray source catalogues.<i>Results<i/>. We find that almost all of the sources thus far detected by LHAASO-WCDA and in the H.E.S.S. Galactic Plane Survey will be in the reach of ASTRI and CTA with about 300 and 50 hours of exposure, respectively. For the highest energy emitters detected by LHAASO-KM2A, in turn, we provide a list of the most promising objects that would require further investigation. We additionally examined specific classes of sources in order to identify potentially detectable gamma-ray emitters, such as passive molecular clouds (i.e. illuminated by the cosmic-ray sea) and pulsars surrounded by a halo of runaway particles.","PeriodicalId":8571,"journal":{"name":"Astronomy & Astrophysics","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy & Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1051/0004-6361/202449837","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Context. The recent discovery of several ultra high-energy gamma-ray emitters in our Galaxy represents a significant advancement towards the characterisation of its most powerful accelerators. Nonetheless, in order to unambiguously locate the regions where the highest energy particles are produced and understand the responsible physical mechanisms, detailed spectral and morphological studies are required, especially given that most of the observed sources were found to be significantly extended.Aims. In these regards, pointing observations with the next-generation Imaging Atmospheric Cherenkov Telescopes, such as the Cherenkov Telescope Array (CTA) Observatory and the ASTRI Mini-Array (ASTRI), are expected to provide significant improvements. Here we aim to identify the most promising sources to target in future observations.Methods. For this purpose, we performed a comparative analysis of the expected performance of ASTRI and CTA, computing their differential sensitivities towards extended sources, and further explored their capabilities with respect to specific case studies, including follow-ups of existing gamma-ray source catalogues.Results. We find that almost all of the sources thus far detected by LHAASO-WCDA and in the H.E.S.S. Galactic Plane Survey will be in the reach of ASTRI and CTA with about 300 and 50 hours of exposure, respectively. For the highest energy emitters detected by LHAASO-KM2A, in turn, we provide a list of the most promising objects that would require further investigation. We additionally examined specific classes of sources in order to identify potentially detectable gamma-ray emitters, such as passive molecular clouds (i.e. illuminated by the cosmic-ray sea) and pulsars surrounded by a halo of runaway particles.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Astronomy & Astrophysics
Astronomy & Astrophysics 地学天文-天文与天体物理
CiteScore
10.20
自引率
27.70%
发文量
2105
审稿时长
1-2 weeks
期刊介绍: Astronomy & Astrophysics is an international Journal that publishes papers on all aspects of astronomy and astrophysics (theoretical, observational, and instrumental) independently of the techniques used to obtain the results.
期刊最新文献
Bright unintended electromagnetic radiation from second-generation Starlink satellites Detection prospects of very and ultra high-energy gamma rays from extended sources with ASTRI, CTA, and LHAASO Magnetic helicity and energy budgets of jet events from an emerging solar active region A multi-wavelength study of Galactic H II regions with extended emission Mapping the exo-Neptunian landscape
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1