Physics of Ferroelectric Wurtzite Al1−xScxN Thin Films

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Advanced Electronic Materials Pub Date : 2024-09-19 DOI:10.1002/aelm.202400279
Feng Yang
{"title":"Physics of Ferroelectric Wurtzite Al1−xScxN Thin Films","authors":"Feng Yang","doi":"10.1002/aelm.202400279","DOIUrl":null,"url":null,"abstract":"Al<jats:sub>1−x</jats:sub>Sc<jats:sub>x</jats:sub>N emerges as a revolutionary ferroelectric material within the III‐N family. It combines exceptional switchable polarization (80–165 µC cm<jats:sup>−</jats:sup><jats:sup>2</jats:sup>), highly tunable coercive fields (1.5–6.5 MV cm<jats:sup>−</jats:sup>¹), and a wide bandgap (4.9–5.6 eV). Unlike conventional ferroelectrics, Al<jats:sub>1−x</jats:sub>Sc<jats:sub>x</jats:sub>N exhibits remarkable compatibility with both CMOS and III‐N technologies. It can be fabricated on plastic substrates at low temperatures, demonstrating excellent flexibility and biocompatibility. Remarkably, Al<jats:sub>1−x</jats:sub>Sc<jats:sub>x</jats:sub>N maintains superior performance in harsh environments due to its outstanding thermal stability (up to 1100 °C). These unique characteristics position Al<jats:sub>1−x</jats:sub>Sc<jats:sub>x</jats:sub>N as a highly promising candidate for a wide range of applications, including high‐performance memory, in‐memory computing, neuromorphic computing, and next‐generation wearable and implantable devices, particularly for operation in complex environments. Despite its potential, Al<jats:sub>1−x</jats:sub>Sc<jats:sub>x</jats:sub>N faces challenges such as high coercive fields, significant leakage currents, and limited polarization reversal cycle life. Addressing these challenges require a deeper understanding of the fundamental physics controlling Al<jats:sub>1−x</jats:sub>Sc<jats:sub>x</jats:sub>N films. This review explores the origins of Al<jats:sub>1−x</jats:sub>Sc<jats:sub>x</jats:sub>N's ferroelectricity and phase stability, delves into the fundamental theory of wurtzite ferroelectricity, investigates mechanisms for controlling spontaneous polarization and coercive fields, examines recent research progress in Al<jats:sub>1−x</jats:sub>Sc<jats:sub>x</jats:sub>N ferroelectric devices, and outlines future development directions for this exciting material.","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"190 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aelm.202400279","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Al1−xScxN emerges as a revolutionary ferroelectric material within the III‐N family. It combines exceptional switchable polarization (80–165 µC cm2), highly tunable coercive fields (1.5–6.5 MV cm¹), and a wide bandgap (4.9–5.6 eV). Unlike conventional ferroelectrics, Al1−xScxN exhibits remarkable compatibility with both CMOS and III‐N technologies. It can be fabricated on plastic substrates at low temperatures, demonstrating excellent flexibility and biocompatibility. Remarkably, Al1−xScxN maintains superior performance in harsh environments due to its outstanding thermal stability (up to 1100 °C). These unique characteristics position Al1−xScxN as a highly promising candidate for a wide range of applications, including high‐performance memory, in‐memory computing, neuromorphic computing, and next‐generation wearable and implantable devices, particularly for operation in complex environments. Despite its potential, Al1−xScxN faces challenges such as high coercive fields, significant leakage currents, and limited polarization reversal cycle life. Addressing these challenges require a deeper understanding of the fundamental physics controlling Al1−xScxN films. This review explores the origins of Al1−xScxN's ferroelectricity and phase stability, delves into the fundamental theory of wurtzite ferroelectricity, investigates mechanisms for controlling spontaneous polarization and coercive fields, examines recent research progress in Al1−xScxN ferroelectric devices, and outlines future development directions for this exciting material.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
铁电 Wurtzite Al1-xScxN 薄膜的物理学原理
Al1-xScxN 是 III-N 系列中一种革命性的铁电材料。它集出色的可切换极化(80-165 µC cm-2)、高度可调的矫顽力场(1.5-6.5 MV cm-¹)和宽带隙(4.9-5.6 eV)于一身。与传统的铁电材料不同,Al1-xScxN 与 CMOS 和 III-N 技术都有显著的兼容性。它可以在低温下在塑料基底上制造,显示出出色的柔韧性和生物兼容性。值得注意的是,Al1-xScxN 凭借其出色的热稳定性(高达 1100 °C),可在恶劣环境中保持卓越性能。这些独特的特性使 Al1-xScxN 成为极具潜力的候选材料,可广泛应用于高性能存储器、内存计算、神经形态计算以及下一代可穿戴和植入式设备等领域,特别是在复杂环境中工作时。尽管 Al1-xScxN 具有很大的潜力,但它也面临着一些挑战,例如高矫顽力场、巨大的漏电流和有限的极化反转周期寿命。要应对这些挑战,就必须深入了解控制 Al1-xScxN 薄膜的基本物理学原理。本综述探讨了 Al1-xScxN 铁电性和相稳定性的起源,深入研究了沃特兹铁电性的基本理论,研究了控制自发极化和矫顽力场的机制,考察了 Al1-xScxN 铁电器件的最新研究进展,并概述了这种令人兴奋的材料的未来发展方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Electronic Materials
Advanced Electronic Materials NANOSCIENCE & NANOTECHNOLOGYMATERIALS SCIE-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.00
自引率
3.20%
发文量
433
期刊介绍: Advanced Electronic Materials is an interdisciplinary forum for peer-reviewed, high-quality, high-impact research in the fields of materials science, physics, and engineering of electronic and magnetic materials. It includes research on physics and physical properties of electronic and magnetic materials, spintronics, electronics, device physics and engineering, micro- and nano-electromechanical systems, and organic electronics, in addition to fundamental research.
期刊最新文献
Photothermal Driven Biomimetic Actuator Based on Asymmetric Microstructure Nb2CTx MXene Film Ag Nanoparticle Ink for High-Resolution Printed Electrodes and Organic Thin-Film Transistors Using Reverse-Offset Printing A Self-Organizing Map Spiking Neural Network Based on Tin Oxide Memristive Synapses and Neurons Self-Powered UV Photodetectors With Ultrahigh Performance Enabled by Graphene Oxide-Modulated CuI Hole Transport Layer Tuning the Organic Electrochemical Transistor (OECT) Threshold Voltage with Monomer Blends
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1