Joseph B. Solomon, Chi Chung Lee, Yiling A. Liu, Calder Duffin, Markus W. Ribbe, Yilin Hu
{"title":"Ammonia synthesis via an engineered nitrogenase assembly pathway in Escherichia coli","authors":"Joseph B. Solomon, Chi Chung Lee, Yiling A. Liu, Calder Duffin, Markus W. Ribbe, Yilin Hu","doi":"10.1038/s41929-024-01229-x","DOIUrl":null,"url":null,"abstract":"Heterologous expression of nitrogenase has been actively pursued because of the far-reaching impact of this enzyme on agriculture, energy and the environment. However, isolation of an active two-component, metallocentre-containing nitrogenase from a non-diazotrophic host has yet to be accomplished. Here we report the heterologous synthesis of an active molybdenum-nitrogenase by combining genes from Azotobacter vinelandii and Methanosarcina acetivorans in Escherichia coli. Metal, activity and electron paramagnetic resonance analyses demonstrate the integrity of the metallocentres in the purified nitrogenase enzyme; whereas growth, nanoscale secondary ion mass spectrometry and nuclear magnetic resonance experiments illustrate diazotrophic growth and 15N enrichment by the E. coli expression strain, and accumulation of extracellular ammonia upon deletion of the ammonia transporter that permits incorporation of thus-generated nitrogen into the cellular mass of a non-diazotrophic E. coli strain. As such, this study provides a crucial prototype system that could be optimized/modified to enable future transgenic expression and biotechnological adaptations of nitrogenase. Heterologous expression of an active, metallocentre-containing nitrogenase in a non-diazotrophic host is challenging. Now, the heterologous biosynthetic pathway of Mo-nitrogenase is pieced together in Escherichia coli using genes from Azotobacter vinelandii and Methanosarcina acetivorans.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"7 10","pages":"1130-1141"},"PeriodicalIF":42.8000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.nature.com/articles/s41929-024-01229-x","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Heterologous expression of nitrogenase has been actively pursued because of the far-reaching impact of this enzyme on agriculture, energy and the environment. However, isolation of an active two-component, metallocentre-containing nitrogenase from a non-diazotrophic host has yet to be accomplished. Here we report the heterologous synthesis of an active molybdenum-nitrogenase by combining genes from Azotobacter vinelandii and Methanosarcina acetivorans in Escherichia coli. Metal, activity and electron paramagnetic resonance analyses demonstrate the integrity of the metallocentres in the purified nitrogenase enzyme; whereas growth, nanoscale secondary ion mass spectrometry and nuclear magnetic resonance experiments illustrate diazotrophic growth and 15N enrichment by the E. coli expression strain, and accumulation of extracellular ammonia upon deletion of the ammonia transporter that permits incorporation of thus-generated nitrogen into the cellular mass of a non-diazotrophic E. coli strain. As such, this study provides a crucial prototype system that could be optimized/modified to enable future transgenic expression and biotechnological adaptations of nitrogenase. Heterologous expression of an active, metallocentre-containing nitrogenase in a non-diazotrophic host is challenging. Now, the heterologous biosynthetic pathway of Mo-nitrogenase is pieced together in Escherichia coli using genes from Azotobacter vinelandii and Methanosarcina acetivorans.
期刊介绍:
Nature Catalysis serves as a platform for researchers across chemistry and related fields, focusing on homogeneous catalysis, heterogeneous catalysis, and biocatalysts, encompassing both fundamental and applied studies. With a particular emphasis on advancing sustainable industries and processes, the journal provides comprehensive coverage of catalysis research, appealing to scientists, engineers, and researchers in academia and industry.
Maintaining the high standards of the Nature brand, Nature Catalysis boasts a dedicated team of professional editors, rigorous peer-review processes, and swift publication times, ensuring editorial independence and quality. The journal publishes work spanning heterogeneous catalysis, homogeneous catalysis, and biocatalysis, covering areas such as catalytic synthesis, mechanisms, characterization, computational studies, nanoparticle catalysis, electrocatalysis, photocatalysis, environmental catalysis, asymmetric catalysis, and various forms of organocatalysis.