Pressure Visualization and Quantification Photonic Skin Based on Flexible Optical Fiber Combiner

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2024-09-19 DOI:10.1002/adfm.202408800
Jie Fang, Hongyan Zheng, Anping Yang, Haojun Liu, Yongcheng He, Hongyou Zhou, Luyan Liu, Enhai Song, Qianyi Guo, Jiulin Gan, Zhongmin Yang
{"title":"Pressure Visualization and Quantification Photonic Skin Based on Flexible Optical Fiber Combiner","authors":"Jie Fang, Hongyan Zheng, Anping Yang, Haojun Liu, Yongcheng He, Hongyou Zhou, Luyan Liu, Enhai Song, Qianyi Guo, Jiulin Gan, Zhongmin Yang","doi":"10.1002/adfm.202408800","DOIUrl":null,"url":null,"abstract":"The integration of pressure quantification and visualization enhances pressure perception, accuracy, and efficiency. Current solutions require improvements in quantization accuracy, structural simplicity, and integration. We proposed a novel photonic skin comprising a 3 × 1 flexible optical fiber combiner, integrating red, green, and blue light emitting diode (LED) chips through three flexible optical fibers. Under pressure, changes in the optical fibers' transmission loss alter the output light intensity ratio, thus inducing a color shift at the combiner's output. This visible change can be precisely quantified using a color sensor chip. Performance metrics include sensing range up to 33N, sensitivity between 0.04 and 0.24 dB N<sup>−1</sup>, detection limit below 0.08 N, response time of 500 ms, recovery time of 400 ms, and durability exceeding 2000 cycles. A compact flexible circuit board manages light source driving, data acquisition, and wireless communication, forming a wearable photonic skin system. This system enables visual recognition and quantitative measurement of pressure across diverse scenarios, including different tactile modes, multi-position pressure, finger bending, and neck movement. For oral occlusion force detection, the spatial separation of the sensing and visualization areas enables the system to simultaneously provide accurate measurements and intuitive visual assessment.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":null,"pages":null},"PeriodicalIF":18.5000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202408800","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The integration of pressure quantification and visualization enhances pressure perception, accuracy, and efficiency. Current solutions require improvements in quantization accuracy, structural simplicity, and integration. We proposed a novel photonic skin comprising a 3 × 1 flexible optical fiber combiner, integrating red, green, and blue light emitting diode (LED) chips through three flexible optical fibers. Under pressure, changes in the optical fibers' transmission loss alter the output light intensity ratio, thus inducing a color shift at the combiner's output. This visible change can be precisely quantified using a color sensor chip. Performance metrics include sensing range up to 33N, sensitivity between 0.04 and 0.24 dB N−1, detection limit below 0.08 N, response time of 500 ms, recovery time of 400 ms, and durability exceeding 2000 cycles. A compact flexible circuit board manages light source driving, data acquisition, and wireless communication, forming a wearable photonic skin system. This system enables visual recognition and quantitative measurement of pressure across diverse scenarios, including different tactile modes, multi-position pressure, finger bending, and neck movement. For oral occlusion force detection, the spatial separation of the sensing and visualization areas enables the system to simultaneously provide accurate measurements and intuitive visual assessment.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
压力量化和可视化的整合可增强压力感知、准确性和效率。目前的解决方案需要在量化精度、结构简洁性和集成度方面进行改进。我们提出了一种由 3 × 1 柔性光纤组合器组成的新型光子表皮,通过三根柔性光纤集成了红、绿、蓝发光二极管(LED)芯片。在压力作用下,光纤传输损耗的变化会改变输出光强比,从而在合路器的输出端产生色移。这种可见变化可通过色彩传感器芯片精确量化。其性能指标包括:感应范围高达 33N,灵敏度在 0.04 和 0.24 dB N-1 之间,检测极限低于 0.08 N,响应时间为 500 毫秒,恢复时间为 400 毫秒,耐用性超过 2000 次。一个紧凑的柔性电路板管理光源驱动、数据采集和无线通信,形成一个可穿戴的光子皮肤系统。该系统可在不同场景下对压力进行视觉识别和定量测量,包括不同触觉模式、多位置压力、手指弯曲和颈部运动。在口腔闭塞力检测方面,感应区和可视化区的空间分离使系统能够同时提供精确的测量和直观的视觉评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Reactive Oxygen Species Triggered Cleavage of Thioketal-Containing Supramolecular Nanoparticles for Inflammation-Targeted Oral Therapy in Ulcerative Colitis Smart Antibacterial Coatings with On-Demand Drug Release and Real-Time Monitoring Fluorescent Microneedle-Based Theranostic Patch for Naked-Eye Monitoring and On-Demand Photo-Therapy of Bacterial Biofilm Infections Pressure Visualization and Quantification Photonic Skin Based on Flexible Optical Fiber Combiner Qualitative Identification of the Spin-to-Orbital Conversion Mechanism Modulated by Rare-Earth Nd, Gd, and Ho Metals via Terahertz Emission Measurements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1