Tian Zhao, Fang Ye, Bo Huang, Zhaochen Li, Laifei Cheng
{"title":"Microstructure Design and Dimensional Engineering of Nanomaterials for Electromagnetic Wave Absorption and Thermal Insulation","authors":"Tian Zhao, Fang Ye, Bo Huang, Zhaochen Li, Laifei Cheng","doi":"10.1021/acsami.4c09772","DOIUrl":null,"url":null,"abstract":"Multifunctional materials integrated with electromagnetic wave absorption (EWA), thermal insulation, and lightweight properties are urgently indispensable for the flourishing advancement of space technology, which can simultaneously prevent electromagnetic detection and resist aerodynamic heating. To achieve excellent synergistic EWA and thermal insulation performance, the elaborate regulate the microstructure and dimension of nanomaterials has emerged as a captivating research direction. However, comprehending the structure–property relationships between microstructure, electromagnetic response, and thermal insulation mechanisms remains a significant challenge. Herein, a comprehensive perspective focuses on the microstructure design encompassing various dimensions of nanomaterials, providing a comprehensive understanding of correlations among structure, EWA, and thermal insulation. First, the cutting-edge mechanisms of EWA and thermal insulation are elaborated, followed by the relationship between the dimensions of nanomaterials. Moreover, the synergistic design methods of EWA and thermal insulation are explored. Lastly, this review summarizes the corresponding shortcomings and issues of current EWA-integrated thermal insulation materials and proposes breakthrough directions for the creation of materials with superior performance.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c09772","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Multifunctional materials integrated with electromagnetic wave absorption (EWA), thermal insulation, and lightweight properties are urgently indispensable for the flourishing advancement of space technology, which can simultaneously prevent electromagnetic detection and resist aerodynamic heating. To achieve excellent synergistic EWA and thermal insulation performance, the elaborate regulate the microstructure and dimension of nanomaterials has emerged as a captivating research direction. However, comprehending the structure–property relationships between microstructure, electromagnetic response, and thermal insulation mechanisms remains a significant challenge. Herein, a comprehensive perspective focuses on the microstructure design encompassing various dimensions of nanomaterials, providing a comprehensive understanding of correlations among structure, EWA, and thermal insulation. First, the cutting-edge mechanisms of EWA and thermal insulation are elaborated, followed by the relationship between the dimensions of nanomaterials. Moreover, the synergistic design methods of EWA and thermal insulation are explored. Lastly, this review summarizes the corresponding shortcomings and issues of current EWA-integrated thermal insulation materials and proposes breakthrough directions for the creation of materials with superior performance.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.