Immunomodulatory Effects and Regulatory Mechanisms of (R)-6-HITC, an Isothiocyanate from Wasabi (Eutrema japonicum), in an Ex Vivo Mouse Model of LPS-Induced Inflammation
Manuel Alcarranza, Catalina Alarcón-de-la-Lastra, Rocío Recio Jiménez, Inmaculada Fernández, María Luisa Castejón Martínez, Isabel Villegas
{"title":"Immunomodulatory Effects and Regulatory Mechanisms of (R)-6-HITC, an Isothiocyanate from Wasabi (Eutrema japonicum), in an Ex Vivo Mouse Model of LPS-Induced Inflammation","authors":"Manuel Alcarranza, Catalina Alarcón-de-la-Lastra, Rocío Recio Jiménez, Inmaculada Fernández, María Luisa Castejón Martínez, Isabel Villegas","doi":"10.1021/acs.jafc.4c02943","DOIUrl":null,"url":null,"abstract":"The present study aimed to investigate the effects of (<i>R</i>)-(−)-1-isothiocyanato-6-(methylsulfinyl)-hexane [(<i>R</i>)-6-HITC], the major isothiocyanate present in wasabi, in an <i>ex vivo</i> model of inflammation using lipopolysaccharide-stimulated murine peritoneal macrophages. (<i>R</i>)-6-HITC improved the immune response and mitigated oxidative stress, which involved suppression of reactive oxygen species, nitric oxide, and pro-inflammatory cytokines (IL-1β, IL-6, IL-17, IL-18, and TNF-α) production and downregulation of pro-inflammatory enzymes such as inducible nitric oxide synthase, COX-2, and mPGES-1. In addition, (<i>R</i>)-6-HITC was able to activate the Nrf2/HO-1 axis while simultaneously inhibiting key signaling pathways, including JAK2/STAT3, mitogen-activated protein kinases, and canonical and noncanonical inflammasome pathways, orchestrating its potent immunomodulatory effects. Collectively, these findings demonstrate the potential of (<i>R</i>)-6-HITC as a promising nutraceutical for the management of immuno-inflammatory diseases and justify the need for further <i>in vivo</i> validation studies.","PeriodicalId":41,"journal":{"name":"Journal of Agricultural and Food Chemistry","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural and Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1021/acs.jafc.4c02943","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The present study aimed to investigate the effects of (R)-(−)-1-isothiocyanato-6-(methylsulfinyl)-hexane [(R)-6-HITC], the major isothiocyanate present in wasabi, in an ex vivo model of inflammation using lipopolysaccharide-stimulated murine peritoneal macrophages. (R)-6-HITC improved the immune response and mitigated oxidative stress, which involved suppression of reactive oxygen species, nitric oxide, and pro-inflammatory cytokines (IL-1β, IL-6, IL-17, IL-18, and TNF-α) production and downregulation of pro-inflammatory enzymes such as inducible nitric oxide synthase, COX-2, and mPGES-1. In addition, (R)-6-HITC was able to activate the Nrf2/HO-1 axis while simultaneously inhibiting key signaling pathways, including JAK2/STAT3, mitogen-activated protein kinases, and canonical and noncanonical inflammasome pathways, orchestrating its potent immunomodulatory effects. Collectively, these findings demonstrate the potential of (R)-6-HITC as a promising nutraceutical for the management of immuno-inflammatory diseases and justify the need for further in vivo validation studies.
期刊介绍:
The Journal of Agricultural and Food Chemistry publishes high-quality, cutting edge original research representing complete studies and research advances dealing with the chemistry and biochemistry of agriculture and food. The Journal also encourages papers with chemistry and/or biochemistry as a major component combined with biological/sensory/nutritional/toxicological evaluation related to agriculture and/or food.