Nitrogen-Rich Covalent Organic Frameworks Composited High-Temperature Proton Exchange Membranes with Ultralow Volume Expansion and Reduced Phosphoric Acid Leakage

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Materials & Interfaces Pub Date : 2024-09-18 DOI:10.1021/acsami.4c10408
Weiyu Zhang, Jiaqi Ji, Hong Li, Jie Li, Yiming Sun, Yi Tang, Tianqi Yang, Weiyi Jin, Yongqing Zhao, Congshu Huang, Chenliang Gong
{"title":"Nitrogen-Rich Covalent Organic Frameworks Composited High-Temperature Proton Exchange Membranes with Ultralow Volume Expansion and Reduced Phosphoric Acid Leakage","authors":"Weiyu Zhang, Jiaqi Ji, Hong Li, Jie Li, Yiming Sun, Yi Tang, Tianqi Yang, Weiyi Jin, Yongqing Zhao, Congshu Huang, Chenliang Gong","doi":"10.1021/acsami.4c10408","DOIUrl":null,"url":null,"abstract":"Phosphoric acid (PA) leakage and volume expansion are critical factors limiting long-term stable operation of PA-doped polybenzimidazole (PBI) for high-temperature proton exchange membrane fuel cells. Enhancing the interaction between the polymer matrix and PA provides an effective way to minimize PA loss and inhibit excessive membrane swelling. The covalent organic frameworks (COFs) are helpful in improving the performance of PA-PBI membranes due to the robust frameworks, adjustable structures, and good compatibility with polymers. Here, in this work, we synthesized porous COFs named TTA-DFP containing triazine rings and pyridine groups at room temperature for as short as 2 h without oxygen isolation. TTA-DFP was then blended with commercial poly[2,2′-(<i>p</i>-oxidiphenylene)-5,5′-benzimidazole] (OPBI) to prepare composite membranes. The abundant alkaline N sites in TTA-DFP exhibit strong interactions with PA and OPBI, which not only provide more proton transport pathways to promote proton conduction but also immobilize PA in acidophilic micropores to reduce PA leakage. The composite membranes exhibit a much lower volume swelling ratio than that of the OPBI membrane. The PA retention of the composite membrane after 120 h of treatment at 80 °C and 40% relative humidity can reach as high as 84.6%. Particularly, the proton conductivity of the composite membrane doped with 15 wt% TTA-DFP achieves 0.112 S cm<sup>–1</sup> at 180 °C without humidification with a swelling ratio of 24.1%. In addition, it has an optimal peak power density of 824.4 mW cm<sup>–2</sup> at 180 °C, which is 1.7 times that of the OPBI membrane. The stability of the composite membrane is much better than that of OPBI at a current density of 0.3 A cm<sup>–2</sup> at 140 °C for 120 h.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"32 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c10408","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Phosphoric acid (PA) leakage and volume expansion are critical factors limiting long-term stable operation of PA-doped polybenzimidazole (PBI) for high-temperature proton exchange membrane fuel cells. Enhancing the interaction between the polymer matrix and PA provides an effective way to minimize PA loss and inhibit excessive membrane swelling. The covalent organic frameworks (COFs) are helpful in improving the performance of PA-PBI membranes due to the robust frameworks, adjustable structures, and good compatibility with polymers. Here, in this work, we synthesized porous COFs named TTA-DFP containing triazine rings and pyridine groups at room temperature for as short as 2 h without oxygen isolation. TTA-DFP was then blended with commercial poly[2,2′-(p-oxidiphenylene)-5,5′-benzimidazole] (OPBI) to prepare composite membranes. The abundant alkaline N sites in TTA-DFP exhibit strong interactions with PA and OPBI, which not only provide more proton transport pathways to promote proton conduction but also immobilize PA in acidophilic micropores to reduce PA leakage. The composite membranes exhibit a much lower volume swelling ratio than that of the OPBI membrane. The PA retention of the composite membrane after 120 h of treatment at 80 °C and 40% relative humidity can reach as high as 84.6%. Particularly, the proton conductivity of the composite membrane doped with 15 wt% TTA-DFP achieves 0.112 S cm–1 at 180 °C without humidification with a swelling ratio of 24.1%. In addition, it has an optimal peak power density of 824.4 mW cm–2 at 180 °C, which is 1.7 times that of the OPBI membrane. The stability of the composite membrane is much better than that of OPBI at a current density of 0.3 A cm–2 at 140 °C for 120 h.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
富氮共价有机框架复合高温质子交换膜具有超低体积膨胀和减少磷酸泄漏的特性
磷酸(PA)泄漏和体积膨胀是限制高温质子交换膜燃料电池中掺杂 PA 的聚苯并咪唑(PBI)长期稳定运行的关键因素。增强聚合物基体与 PA 之间的相互作用为最大限度地减少 PA 损失和抑制膜过度膨胀提供了有效途径。共价有机框架(COFs)具有框架坚固、结构可调、与聚合物相容性好等特点,有助于提高 PA-PBI 膜的性能。在这项工作中,我们在室温下合成了名为 TTA-DFP 的多孔 COF,其中含有三嗪环和吡啶基,合成时间最短为 2 小时,且不隔氧。然后将 TTA-DFP 与商用聚[2,2′-(对-氧化二苯基)-5,5′-苯并咪唑](OPBI)混合,制备出复合膜。TTA-DFP 中丰富的碱性 N 位点与 PA 和 OPBI 具有很强的相互作用,不仅提供了更多的质子传输途径以促进质子传导,而且还将 PA 固定在亲酸性微孔中以减少 PA 的泄漏。复合膜的体积膨胀率远低于 OPBI 膜。在 80 °C 和 40% 相对湿度条件下处理 120 小时后,复合膜的 PA 保留率高达 84.6%。特别是,掺杂了 15 wt% TTA-DFP 的复合膜在 180 °C 无加湿条件下的质子传导率达到了 0.112 S cm-1,膨胀比为 24.1%。此外,它在 180 °C 时的最佳峰值功率密度为 824.4 mW cm-2,是 OPBI 膜的 1.7 倍。当电流密度为 0.3 A cm-2 时,复合膜在 140 °C 下可持续 120 小时,其稳定性远高于 OPBI 膜。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
阿拉丁
2, 6-diformylpyridine
阿拉丁
1,3,5-tris (4-aminophenyl) benzene
阿拉丁
1,3,5-Tris(4-aminophenyl) triazine
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
期刊最新文献
Issue Editorial Masthead Issue Publication Information Constructing Z-Scheme Ni-MOF-74/CoAl-Layered Double Hydroxide Heterojunctions for Enhanced Photocatalytic CO2 Reduction Ultra-Broadband and Polarization-Sensitive TaPdTe5-Based Photodetectors from Visible to Terahertz Wavelength Ethanol-Assisted Alkanethiol Self-Assembled Monolayer Disruption by Mobile Siloxane Oligomers for Precise Galvanic Replacement Positioning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1