Electrocatalytic grafting of polyvinyl chloride plastics

IF 19.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Chem Pub Date : 2024-09-19 DOI:10.1016/j.chempr.2024.08.021
Jordan L.S. Zackasee, Valmuri Srivardhan, Blaise L. Truesdell, Elizabeth J. Vrana, Christo S. Sevov
{"title":"Electrocatalytic grafting of polyvinyl chloride plastics","authors":"Jordan L.S. Zackasee, Valmuri Srivardhan, Blaise L. Truesdell, Elizabeth J. Vrana, Christo S. Sevov","doi":"10.1016/j.chempr.2024.08.021","DOIUrl":null,"url":null,"abstract":"<p>Polyvinyl chloride (PVC) plastics require high loadings of plasticizers and stabilizers to achieve commercially useful bulk properties. However, these non-covalent additives leach from PVC over time, resulting in the loss of their tailored functionality. This work details the electrocatalytic functionalization of PVC to covalently graft plasticizing additives directly onto the polymer backbone. Here, mechanistic insights guided the design of electrocatalysts capable of modifying C–Cl bonds of PVC under mild conditions with high selectivity while suppressing side reactions such as elimination and chain scission. Functional groups that mimic PVC plasticizers are covalently installed into the backbone of PVC to create new materials with distinct bulk properties from the original polymer. The degree of polymer grafting is easily controlled by simply changing the redox capacity that is passed during electrolysis. This strategy is employed to create chemically and leach-resistant PVC materials by directly electrolyzing mixtures of consumer PVC products.</p>","PeriodicalId":268,"journal":{"name":"Chem","volume":null,"pages":null},"PeriodicalIF":19.1000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.chempr.2024.08.021","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Polyvinyl chloride (PVC) plastics require high loadings of plasticizers and stabilizers to achieve commercially useful bulk properties. However, these non-covalent additives leach from PVC over time, resulting in the loss of their tailored functionality. This work details the electrocatalytic functionalization of PVC to covalently graft plasticizing additives directly onto the polymer backbone. Here, mechanistic insights guided the design of electrocatalysts capable of modifying C–Cl bonds of PVC under mild conditions with high selectivity while suppressing side reactions such as elimination and chain scission. Functional groups that mimic PVC plasticizers are covalently installed into the backbone of PVC to create new materials with distinct bulk properties from the original polymer. The degree of polymer grafting is easily controlled by simply changing the redox capacity that is passed during electrolysis. This strategy is employed to create chemically and leach-resistant PVC materials by directly electrolyzing mixtures of consumer PVC products.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
聚氯乙烯(PVC)塑料需要添加大量增塑剂和稳定剂,才能获得商业上有用的体积特性。然而,随着时间的推移,这些非共价添加剂会从聚氯乙烯中渗出,导致其定制功能丧失。这项研究详细介绍了聚氯乙烯的电催化功能化,将增塑添加剂直接共价接枝到聚合物骨架上。在此,对机理的深入了解指导了电催化剂的设计,使其能够在温和条件下以高选择性改性聚氯乙烯的 C-Cl 键,同时抑制消除和链裂等副反应。模仿聚氯乙烯增塑剂的功能基团以共价方式安装到聚氯乙烯的骨架上,从而制造出具有不同于原始聚合物体积特性的新材料。聚合物接枝的程度很容易控制,只需改变电解过程中通过的氧化还原容量即可。通过直接电解消费类聚氯乙烯产品的混合物,可采用这种策略制造出耐化学腐蚀和耐浸渍的聚氯乙烯材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chem
Chem Environmental Science-Environmental Chemistry
CiteScore
32.40
自引率
1.30%
发文量
281
期刊介绍: Chem, affiliated with Cell as its sister journal, serves as a platform for groundbreaking research and illustrates how fundamental inquiries in chemistry and its related fields can contribute to addressing future global challenges. It was established in 2016, and is currently edited by Robert Eagling.
期刊最新文献
Guiding electron transfer for selective C2H6 photoproduction from CO2 Anisotropy-guided interface molecular engineering for stable blue electroluminescence Single-site nanozyme with exposed unsaturated Cu-O2 sites for tumor therapy by coordinating innate immunity and vasculature normalization Electrocatalytic grafting of polyvinyl chloride plastics Microenvironment engineering of non-noble metal alloy for selective propane dehydrogenation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1