“Giant” Colloidal Quantum Well Heterostructures of CdSe@CdS Core@Shell Nanoplatelets from 9.5 to 17.5 Monolayers in Thickness Enabling Ultra-High Gain Lasing (Small 38/2024)

IF 12.1 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Small Pub Date : 2024-09-19 DOI:10.1002/smll.202470281
Furkan Isik, Savas Delikanli, Emek G. Durmusoglu, Ahmet Tarik Isik, Farzan Shabani, Hamed Dehghanpour Baruj, Hilmi Volkan Demir
{"title":"“Giant” Colloidal Quantum Well Heterostructures of CdSe@CdS Core@Shell Nanoplatelets from 9.5 to 17.5 Monolayers in Thickness Enabling Ultra-High Gain Lasing (Small 38/2024)","authors":"Furkan Isik,&nbsp;Savas Delikanli,&nbsp;Emek G. Durmusoglu,&nbsp;Ahmet Tarik Isik,&nbsp;Farzan Shabani,&nbsp;Hamed Dehghanpour Baruj,&nbsp;Hilmi Volkan Demir","doi":"10.1002/smll.202470281","DOIUrl":null,"url":null,"abstract":"<p><b>Colloidal Quantum Wells</b></p><p>“Giant” CdSe@CdS colloidal quantum wells having thicknesses of 9.5 to 17.5 monolayers enable ultra-high material gain coefficient reaching ∼140,000 cm<sup>−1</sup> owing to the contribution of higher energy states to the gain, their high number of states per energy, and suppressed Auger recombination. This ultra-high material gain capability offers an exceptional platform for electrically-driven colloidal thin-film lasers and in-solution lasing applications. More in article number 2309494, Hilmi Volkan Demir and co-workers.\n\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":228,"journal":{"name":"Small","volume":"20 38","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/smll.202470281","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202470281","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Colloidal Quantum Wells

“Giant” CdSe@CdS colloidal quantum wells having thicknesses of 9.5 to 17.5 monolayers enable ultra-high material gain coefficient reaching ∼140,000 cm−1 owing to the contribution of higher energy states to the gain, their high number of states per energy, and suppressed Auger recombination. This ultra-high material gain capability offers an exceptional platform for electrically-driven colloidal thin-film lasers and in-solution lasing applications. More in article number 2309494, Hilmi Volkan Demir and co-workers.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
厚度从 9.5 单层到 17.5 单层的 CdSe@CdS Core@Shell 纳米片的 "巨型 "胶体量子阱异质结构,可实现超高增益激光 (Small 38/2024)
胶体量子阱
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
期刊最新文献
Large‐Scale Cooperative Sulfur Vacancy Dynamics in Two‐Dimensional Mos 2 From Machine Learning Interatomic Potentials Multidimensional Oriented Piezoelectric Conduits for Peripheral Nerve Defect Regeneration Defect‐Morphology Dual Strategy to Achieve Coral‐Like La 1‐ x Ni 0.5‐y Fe 0.5 O 3‐δ /NiO Bifunctional Catalysts for High‐Performance Li‐O 2 Batteries Blue‐Light‐Excited Cyan‐Emitting Carbon‐Dot‐Ormosil Gel for Blue‐Overshoot Mitigation and Cyan‐Gap Bridging in WLEDs Mechanistic Insights into Cathode Degradation During Startup‐Shutdown of PEM Water Electrolysis and Mitigation via Semi‐Embedded Pt/CeO x
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1