Low-Power Threshold Optical Bistability Enabled by Hydrodynamic Kerr Nonlinearity of Free Carriers in Heavily Doped Semiconductors

IF 6.5 1区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Photonics Pub Date : 2024-09-19 DOI:10.1021/acsphotonics.4c01308
Huatian Hu, Gonzalo Álvarez-Pérez, Tadele Orbula Otomalo, Cristian Ciracì
{"title":"Low-Power Threshold Optical Bistability Enabled by Hydrodynamic Kerr Nonlinearity of Free Carriers in Heavily Doped Semiconductors","authors":"Huatian Hu, Gonzalo Álvarez-Pérez, Tadele Orbula Otomalo, Cristian Ciracì","doi":"10.1021/acsphotonics.4c01308","DOIUrl":null,"url":null,"abstract":"We develop an efficient numerical model based on the semiclassical hydrodynamic theory for studying Kerr nonlinearity in degenerate electron systems such as heavily doped semiconductors. This model provides direct access to the electromagnetic responses of the quantum nature of the plasmons in heavily doped semiconductors with complex geometries, which is nontrivial for conventional frameworks. Using this model, we demonstrate nanoscale optical bistability at an exceptionally low-power threshold of 1 mW by leveraging Kerr-type hydrodynamic nonlinearities supported by the heavily doped semiconductor’s free carriers. This high nonlinearity is enabled by a strong coupling between metallic gap plasmons and longitudinal bulk plasmons in the semiconductor due to quantum pressure. These findings offer a viable approach to studying Kerr-type nonlinearity and lay the groundwork for developing efficient and ultrafast all-optical nonlinear devices.","PeriodicalId":23,"journal":{"name":"ACS Photonics","volume":null,"pages":null},"PeriodicalIF":6.5000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1021/acsphotonics.4c01308","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We develop an efficient numerical model based on the semiclassical hydrodynamic theory for studying Kerr nonlinearity in degenerate electron systems such as heavily doped semiconductors. This model provides direct access to the electromagnetic responses of the quantum nature of the plasmons in heavily doped semiconductors with complex geometries, which is nontrivial for conventional frameworks. Using this model, we demonstrate nanoscale optical bistability at an exceptionally low-power threshold of 1 mW by leveraging Kerr-type hydrodynamic nonlinearities supported by the heavily doped semiconductor’s free carriers. This high nonlinearity is enabled by a strong coupling between metallic gap plasmons and longitudinal bulk plasmons in the semiconductor due to quantum pressure. These findings offer a viable approach to studying Kerr-type nonlinearity and lay the groundwork for developing efficient and ultrafast all-optical nonlinear devices.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
重掺杂半导体中自由载流子的水动力克尔非线性带来的低功耗阈值光双稳态性
我们开发了一种基于半经典流体力学理论的高效数值模型,用于研究退化电子系统(如重掺杂半导体)中的克尔非线性。该模型可直接获取具有复杂几何结构的重掺杂半导体中等离子体量子性质的电磁响应,这对于传统框架来说并非难事。利用这一模型,我们利用重掺杂半导体自由载流子支持的克尔型流体动力非线性,在 1 mW 的超低功率阈值下演示了纳米级光学双稳态。在量子压力的作用下,半导体中的金属间隙质子和纵向体质子之间产生了强烈的耦合,从而实现了这种高非线性。这些发现为研究克尔型非线性提供了一种可行的方法,并为开发高效、超快的全光非线性器件奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Photonics
ACS Photonics NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.90
自引率
5.70%
发文量
438
审稿时长
2.3 months
期刊介绍: Published as soon as accepted and summarized in monthly issues, ACS Photonics will publish Research Articles, Letters, Perspectives, and Reviews, to encompass the full scope of published research in this field.
期刊最新文献
Tensile-Strained GeSn Microbridge Lasers with Lithographically Controllable Emission Wavelengths Single-Base Resolution Photonic-Integrated Chips via Hybrid Dielectric–Metal Nanocavities for Ultrasensitive Multichannel Biosensing Plasmonic Hot Carrier Transfer: Direction and Distance Dependence in Nanoparticle-on-Mirror Systems Nanocavities for Molecular Optomechanics: Their Fundamental Description and Applications Epitaxial Engineering of FAPbBr3/FAPbBr3–xClx Heterojunctions for Sensitive X-ray and α-Particle Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1