Mohammad M. Hosseini;Joao Pedro;Nelson Costa;Carlos Castro;Antonio Napoli
{"title":"Optimized design of horseshoe-and-spur filterless networks leveraging point-to-multipoint coherent pluggable transceivers","authors":"Mohammad M. Hosseini;Joao Pedro;Nelson Costa;Carlos Castro;Antonio Napoli","doi":"10.1364/JOCN.529546","DOIUrl":null,"url":null,"abstract":"Cutting-edge network architectures and solutions are needed to empower operators to address capacity demands in metro and access networks efficiently. The horseshoe topology, along with similar topologies, is commonly employed in metro-aggregation segments due to its compatibility with the hub-and-spoke traffic pattern present in these networks and the survivability that they can provide. A filterless architecture can enhance cost-effectiveness by replacing active elements with passive components. Moreover, supporting coherent-based point-to-multipoint transceivers—enabled by digital subcarrier multiplexing (DSCM)—can yield additional cost savings. It is noteworthy that telecommunication network topologies often evolve to accommodate more end (leaf) nodes, extending the original horseshoe with spurs or small and short trees. This paper targets these types of networks and proposes combining the utilization of coherent pluggable transceivers leveraging DSCM to guarantee transparent communication between the hub and leaf nodes while adopting different filterless node architectures with selective amplifier deployment. Moreover, it discusses the potential advantages of the architecture using an exact optimization framework tailored to various network sizes and scenarios, which accounts for the amplifiers’ placement and the available types of power splitters/combiners/couplers. The results demonstrate that strategically deploying add/drop and express amplifiers, along with optimizing coupler ratios, can effectively meet design requirements while minimizing the number of optical amplifiers required.","PeriodicalId":50103,"journal":{"name":"Journal of Optical Communications and Networking","volume":"16 10","pages":"969-980"},"PeriodicalIF":4.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optical Communications and Networking","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10683895/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Cutting-edge network architectures and solutions are needed to empower operators to address capacity demands in metro and access networks efficiently. The horseshoe topology, along with similar topologies, is commonly employed in metro-aggregation segments due to its compatibility with the hub-and-spoke traffic pattern present in these networks and the survivability that they can provide. A filterless architecture can enhance cost-effectiveness by replacing active elements with passive components. Moreover, supporting coherent-based point-to-multipoint transceivers—enabled by digital subcarrier multiplexing (DSCM)—can yield additional cost savings. It is noteworthy that telecommunication network topologies often evolve to accommodate more end (leaf) nodes, extending the original horseshoe with spurs or small and short trees. This paper targets these types of networks and proposes combining the utilization of coherent pluggable transceivers leveraging DSCM to guarantee transparent communication between the hub and leaf nodes while adopting different filterless node architectures with selective amplifier deployment. Moreover, it discusses the potential advantages of the architecture using an exact optimization framework tailored to various network sizes and scenarios, which accounts for the amplifiers’ placement and the available types of power splitters/combiners/couplers. The results demonstrate that strategically deploying add/drop and express amplifiers, along with optimizing coupler ratios, can effectively meet design requirements while minimizing the number of optical amplifiers required.
期刊介绍:
The scope of the Journal includes advances in the state-of-the-art of optical networking science, technology, and engineering. Both theoretical contributions (including new techniques, concepts, analyses, and economic studies) and practical contributions (including optical networking experiments, prototypes, and new applications) are encouraged. Subareas of interest include the architecture and design of optical networks, optical network survivability and security, software-defined optical networking, elastic optical networks, data and control plane advances, network management related innovation, and optical access networks. Enabling technologies and their applications are suitable topics only if the results are shown to directly impact optical networking beyond simple point-to-point networks.