Yunqiang Du, Chaoran Chen, Yushou Zhao, Jing Wang, Ziming Chen, Menglan Lv, Fan Zhang, Qifan Xue, Fei Guo, Yaohua Mai, Bin Zhang
{"title":"Phenanthroline-Based Low-Cost and Efficient Small-Molecule Cathode Interfacial Layer Enables High-Performance Inverted Perovskite Solar Cells via Doctor-Blade Coating","authors":"Yunqiang Du, Chaoran Chen, Yushou Zhao, Jing Wang, Ziming Chen, Menglan Lv, Fan Zhang, Qifan Xue, Fei Guo, Yaohua Mai, Bin Zhang","doi":"10.1021/acsami.4c07014","DOIUrl":null,"url":null,"abstract":"Perovskite solar cells (PSCs) have recently emerged as highly efficient and cutting-edge photovoltaic technology. In inverted PSCs, challenges are focused on the insufficient interface contact and energy level misalignment between the electron transport layer (ETL) and the metal electrode. Hence, the cathode interfacial layer (CIL) plays a crucial role in regulating energy levels and enabling charge extraction in PSCs. In this study, a low-cost phenanthroline derivative, 4,7-dimethoxy-1,10-phenanthroline (Phen-OMe), is developed as an efficient CIL between the PCBM and Ag electrodes. The incorporation of Phen-OMe not only improves the interfacial contact but also effectively reduces the work function (WF) of the Ag electrode, thus promoting charge dissociation and transport at the interface. Through utilizing a wide-band-gap perovskite with the band gap of 1.77 eV as the active layer by a simple, high-throughput, and low-cost doctor-blade coating process, the power conversion efficiency (PCE) is enhanced significantly from 16.11% of the control device to 18.61% of the device with Phen-OMe as the CIL. Interestingly, Phen-OMe shows a broad application as the CIL in PSCs and tandem solar cells (TSCs), resulting in a boosted efficiency of 22.29% in intermediate-band-gap PSCs and a PCE of 22.05% with a high open-circuit voltage (<i>V</i><sub>OC</sub>) of 2.12 V in the perovskite/organic TSC. This achievement shows that Phen-OMe would be a potential candidate as low-cost and efficient CILs for PSCs.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c07014","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Perovskite solar cells (PSCs) have recently emerged as highly efficient and cutting-edge photovoltaic technology. In inverted PSCs, challenges are focused on the insufficient interface contact and energy level misalignment between the electron transport layer (ETL) and the metal electrode. Hence, the cathode interfacial layer (CIL) plays a crucial role in regulating energy levels and enabling charge extraction in PSCs. In this study, a low-cost phenanthroline derivative, 4,7-dimethoxy-1,10-phenanthroline (Phen-OMe), is developed as an efficient CIL between the PCBM and Ag electrodes. The incorporation of Phen-OMe not only improves the interfacial contact but also effectively reduces the work function (WF) of the Ag electrode, thus promoting charge dissociation and transport at the interface. Through utilizing a wide-band-gap perovskite with the band gap of 1.77 eV as the active layer by a simple, high-throughput, and low-cost doctor-blade coating process, the power conversion efficiency (PCE) is enhanced significantly from 16.11% of the control device to 18.61% of the device with Phen-OMe as the CIL. Interestingly, Phen-OMe shows a broad application as the CIL in PSCs and tandem solar cells (TSCs), resulting in a boosted efficiency of 22.29% in intermediate-band-gap PSCs and a PCE of 22.05% with a high open-circuit voltage (VOC) of 2.12 V in the perovskite/organic TSC. This achievement shows that Phen-OMe would be a potential candidate as low-cost and efficient CILs for PSCs.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.