Molecular Design of Mono-Fluorinated Ether-Based Electrolyte for All-Climate Lithium-ion Batteries and Lithium-Metal Batteries

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2024-09-19 DOI:10.1002/anie.202414201
Yejuan Xue, Yueda Wang, Heng Zhang, Weilong Kong, Yuxin Zhou, Bo Kang, Zhimei Huang, Hongfa Xiang
{"title":"Molecular Design of Mono-Fluorinated Ether-Based Electrolyte for All-Climate Lithium-ion Batteries and Lithium-Metal Batteries","authors":"Yejuan Xue, Yueda Wang, Heng Zhang, Weilong Kong, Yuxin Zhou, Bo Kang, Zhimei Huang, Hongfa Xiang","doi":"10.1002/anie.202414201","DOIUrl":null,"url":null,"abstract":"Fluorinated-ethers are promising electrolyte solvents in lithium metal batteries, for their high antioxidant and excellent reductive stability on Li anode. However, fluorinated-ethers with high fluorination degree suffer from low ionic conductivity and narrow temperature adaptibility. Herein, we synthesize a mono-fluorinated linear ether of bis(2-fluoroethoxy) methane (BFME) with enhanced solvated ability. The -OCH2O- structure and fluoride substitution on the β-C position endows the BFME electrolyte with moderate affinity to Li+, thereby improving the ionic conductivity and decreasing the Li+-desolvation energy barrier at a wide temperature range of -60 ̶ 60 oC. Additionally, the electrolyte with anion-participated solvation structure demonstrates high film-forming ability by forming LiF-rich interfacial film on the electrode surfaces, rendering the graphite anode with an initial Coulombic efficiency (CE) of 94.9% and a Li plating/stripping CE of 99.8% by Aurbach method. Consequently, the Graphite||LiFePO4 pouch cells delivered 83.2%, 92.5% and 81.2% capacity retention after 1250, 200 and 300 cycles at 25, -20 oC and 60 oC, respectively. Moreover, the Li||LFP pouch cell with 3 Ah capacity can operate for 65 cycles with 99% capacity retention, verifying the effectiveness of the BFME electrolyte in stabilizing the interfaces and broadening the temperature adaptibility of lithium-ion and lithium metal batteries.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":null,"pages":null},"PeriodicalIF":16.1000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202414201","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Fluorinated-ethers are promising electrolyte solvents in lithium metal batteries, for their high antioxidant and excellent reductive stability on Li anode. However, fluorinated-ethers with high fluorination degree suffer from low ionic conductivity and narrow temperature adaptibility. Herein, we synthesize a mono-fluorinated linear ether of bis(2-fluoroethoxy) methane (BFME) with enhanced solvated ability. The -OCH2O- structure and fluoride substitution on the β-C position endows the BFME electrolyte with moderate affinity to Li+, thereby improving the ionic conductivity and decreasing the Li+-desolvation energy barrier at a wide temperature range of -60 ̶ 60 oC. Additionally, the electrolyte with anion-participated solvation structure demonstrates high film-forming ability by forming LiF-rich interfacial film on the electrode surfaces, rendering the graphite anode with an initial Coulombic efficiency (CE) of 94.9% and a Li plating/stripping CE of 99.8% by Aurbach method. Consequently, the Graphite||LiFePO4 pouch cells delivered 83.2%, 92.5% and 81.2% capacity retention after 1250, 200 and 300 cycles at 25, -20 oC and 60 oC, respectively. Moreover, the Li||LFP pouch cell with 3 Ah capacity can operate for 65 cycles with 99% capacity retention, verifying the effectiveness of the BFME electrolyte in stabilizing the interfaces and broadening the temperature adaptibility of lithium-ion and lithium metal batteries.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于全气候锂离子电池和锂金属电池的单氟醚基电解质的分子设计
氟化乙醚在锂金属阳极上具有很高的抗氧化性和出色的还原稳定性,因此在锂金属电池的电解质溶剂中大有可为。然而,氟化程度高的含氟醚存在离子电导率低和温度适应性窄的问题。在此,我们合成了一种溶解能力更强的双(2-氟乙氧基)甲烷(BFME)单氟线性醚。BFME 电解质的 -OCH2O- 结构和 β-C 位上的氟取代赋予其对 Li+ 的适度亲和性,从而提高了离子电导率,并降低了 Li+ 在 -60 ̶ 60 oC 宽温度范围内的解溶解能垒。此外,具有阴离子参与溶解结构的电解质还能在电极表面形成富含 LiF 的界面膜,从而表现出很高的成膜能力,使石墨阳极的初始库仑效率(CE)达到 94.9%,而采用奥尔巴赫法计算的锂镀层/剥离CE 达到 99.8%。因此,石墨||LiFePO4 袋式电池在 25、-20 oC 和 60 oC 温度下分别循环 1250、200 和 300 次后,容量保持率分别为 83.2%、92.5% 和 81.2%。此外,容量为 3 Ah 的锂||LFP 袋装电池可工作 65 个循环,容量保持率达 99%,验证了 BFME 电解液在稳定界面和拓宽锂离子电池和锂金属电池温度适应性方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Precise Manipulation of Electron Transfers in Clustered Five Redox Sites. A Strep-Tag Imprinted Polymer Platform for Heterogenous Bio(electro)catalysis. Delocalized Orbitals over Metal Clusters and Organic Linkers Enable Boosted Charge Transfer in Metal-Organic Framework for Overall CO2 Photoreduction. Directional Electron Flow in a Selenoviologen-Based Tetracationic Cyclophane for Enhanced Visible-Light-Driven Hydrogen Evolution. Fully sp2 Carbon-Conjugated Covalent Organic Frameworks with Multiple Active Sites for Advanced Lithium-Ion Battery Cathodes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1