Enhanced device performance of GaN high electron mobility transistors with in situ crystalline SiN cap layer

IF 3.5 2区 物理与天体物理 Q2 PHYSICS, APPLIED Applied Physics Letters Pub Date : 2024-09-20 DOI:10.1063/5.0224144
Xin Luo, Peng Cui, Handoko Linewih, Tieying Zhang, Xinkun Yan, Siheng Chen, Liu Wang, Jiacheng Dai, Zhaojun Lin, Xiangang Xu, Jisheng Han
{"title":"Enhanced device performance of GaN high electron mobility transistors with in situ crystalline SiN cap layer","authors":"Xin Luo, Peng Cui, Handoko Linewih, Tieying Zhang, Xinkun Yan, Siheng Chen, Liu Wang, Jiacheng Dai, Zhaojun Lin, Xiangang Xu, Jisheng Han","doi":"10.1063/5.0224144","DOIUrl":null,"url":null,"abstract":"In this paper, a ∼2 nm in situ SiN cap layer on AlGaN barrier layer is grown, which is revealed to be crystalline using high-resolution cross-sectional transmission electron microscopy. Benefitting from superior interface quality of epitaxial crystalline SiN/AlGaN interface, the gate diodes with in situ SiN cap layer feature lower interface trap state density than that with GaN cap layer. By comparing the GaN high electron mobility transistors (HEMTs) with the conventional GaN cap layer, the GaN HEMTs with in situ SiN cap layer exhibit improved device performance, showing higher electron mobility, higher drain current, larger on/off current ratio, and higher transconductance. For breakdown characteristics, the devices with in situ crystalline SiN cap layer show prominent advantages over the GaN cap layer with a 30% breakdown voltage increase to 810 V.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0224144","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a ∼2 nm in situ SiN cap layer on AlGaN barrier layer is grown, which is revealed to be crystalline using high-resolution cross-sectional transmission electron microscopy. Benefitting from superior interface quality of epitaxial crystalline SiN/AlGaN interface, the gate diodes with in situ SiN cap layer feature lower interface trap state density than that with GaN cap layer. By comparing the GaN high electron mobility transistors (HEMTs) with the conventional GaN cap layer, the GaN HEMTs with in situ SiN cap layer exhibit improved device performance, showing higher electron mobility, higher drain current, larger on/off current ratio, and higher transconductance. For breakdown characteristics, the devices with in situ crystalline SiN cap layer show prominent advantages over the GaN cap layer with a 30% breakdown voltage increase to 810 V.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用原位结晶氮化硅帽层提高氮化镓高电子迁移率晶体管的器件性能
本文在氮化镓(AlGaN)阻挡层上原位生长了 ∼ 2 nm 的氮化硅帽层,并利用高分辨率横截面透射电子显微镜观察到该帽层是结晶的。得益于外延结晶 SiN/AlGaN 界面的优异界面质量,原位 SiN 盖层栅极二极管的界面陷阱态密度低于 GaN 盖层栅极二极管。通过比较带有传统氮化镓帽层的氮化镓高电子迁移率晶体管(HEMT),带有原位氮化镓帽层的氮化镓 HEMT 器件性能有所改善,显示出更高的电子迁移率、更高的漏极电流、更大的导通/关断电流比和更高的跨导。在击穿特性方面,具有原位结晶氮化镓盖帽层的器件比氮化镓盖帽层的器件优势突出,击穿电压提高了 30% 至 810 V。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Physics Letters
Applied Physics Letters 物理-物理:应用
CiteScore
6.40
自引率
10.00%
发文量
1821
审稿时长
1.6 months
期刊介绍: Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology. In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics. APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field. Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.
期刊最新文献
Growth of VO2-ZnS thin film cavity for adaptive thermal emission Enhanced device performance of GaN high electron mobility transistors with in situ crystalline SiN cap layer KOH-activated CoO mesoporous nanoarrays for boosted supercapacitive performance Chip-scale sub-Doppler atomic spectroscopy enabled by a metasurface integrated photonic emitter Coupled terahertz quantum cascade wire lasers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1