Fenge Lin, David Vera Anaya, Shu Gong, Lim Wei Yap, Yan Lu, Zijun Yong, Wenlong Cheng
{"title":"Gold Nanowire Sponge Electrochemistry for Permeable Wearable Sweat Analysis Comfortably and Wirelessly","authors":"Fenge Lin, David Vera Anaya, Shu Gong, Lim Wei Yap, Yan Lu, Zijun Yong, Wenlong Cheng","doi":"10.1021/acssensors.4c01635","DOIUrl":null,"url":null,"abstract":"Electrochemistry-based wearable and wireless sweat analysis is emerging as a promising noninvasive method for real-time health monitoring by tracking chemical and biological markers without the need for invasive blood sampling. It offers the potential to remotely monitor human sweat conditions in relation to metabolic health, stress, and electrolyte balance, which have implications for athletes, patients with chronic conditions, and individuals for the early detection and management of health issues. The state-of-the-art mainstream technology is dominated by the concept of a wearable microfluidic chip, typically based on elastomeric PDMS. While outstanding sensing performance can be realized, the design suffers from the poor permeability of PDMS, which could cause skin redness or irritation. Here, we introduce an omnidirectionally permeable, deformable, and wearable sweat analysis system based on gold nanowire sponges. We demonstrate the concept of all-in-one soft sponge electrochemistry, where the working, reference, and counter electrodes and electrolytes are all integrated within the sponge matrix. The intrinsic porosity of sponge in conjunction with vertically aligned gold nanowire electrodes gives rise to a high electrochemically active surface area of ∼67 cm<sup>2</sup>. Remarkably, this all-in-one sponge-based electrochemical system exhibited stable performance under a pressure of 10 kPa and 300% omnidirectional strain. The gold sponge biosensing electrodes could be sandwiched between two biocompatible sweat pads, which can serve as natural sweat collection and outflow layers. This naturally biocompatible and permeable platform can be integrated with wireless communication circuits, leading to a wireless sweat analysis system for the real-time monitoring of glucose, lactate, and pH during exercise.","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":null,"pages":null},"PeriodicalIF":8.2000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sensors","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssensors.4c01635","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Electrochemistry-based wearable and wireless sweat analysis is emerging as a promising noninvasive method for real-time health monitoring by tracking chemical and biological markers without the need for invasive blood sampling. It offers the potential to remotely monitor human sweat conditions in relation to metabolic health, stress, and electrolyte balance, which have implications for athletes, patients with chronic conditions, and individuals for the early detection and management of health issues. The state-of-the-art mainstream technology is dominated by the concept of a wearable microfluidic chip, typically based on elastomeric PDMS. While outstanding sensing performance can be realized, the design suffers from the poor permeability of PDMS, which could cause skin redness or irritation. Here, we introduce an omnidirectionally permeable, deformable, and wearable sweat analysis system based on gold nanowire sponges. We demonstrate the concept of all-in-one soft sponge electrochemistry, where the working, reference, and counter electrodes and electrolytes are all integrated within the sponge matrix. The intrinsic porosity of sponge in conjunction with vertically aligned gold nanowire electrodes gives rise to a high electrochemically active surface area of ∼67 cm2. Remarkably, this all-in-one sponge-based electrochemical system exhibited stable performance under a pressure of 10 kPa and 300% omnidirectional strain. The gold sponge biosensing electrodes could be sandwiched between two biocompatible sweat pads, which can serve as natural sweat collection and outflow layers. This naturally biocompatible and permeable platform can be integrated with wireless communication circuits, leading to a wireless sweat analysis system for the real-time monitoring of glucose, lactate, and pH during exercise.
期刊介绍:
ACS Sensors is a peer-reviewed research journal that focuses on the dissemination of new and original knowledge in the field of sensor science, particularly those that selectively sense chemical or biological species or processes. The journal covers a broad range of topics, including but not limited to biosensors, chemical sensors, gas sensors, intracellular sensors, single molecule sensors, cell chips, and microfluidic devices. It aims to publish articles that address conceptual advances in sensing technology applicable to various types of analytes or application papers that report on the use of existing sensing concepts in new ways or for new analytes.