Electron-Deficient Engineering in Large-Conjugate-Heptazine Framework to Effectively Shuttle Hot Electrons for Efficient Photocatalytic H2O2 Production

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2024-09-20 DOI:10.1002/adfm.202414193
Ronglan Pan, Wei Lv, Xin Ge, Xiong Huang, Qichuan Hu, Kejian Song, Qiong Liu, Haibo Xie, Bo Wu, Jili Yuan
{"title":"Electron-Deficient Engineering in Large-Conjugate-Heptazine Framework to Effectively Shuttle Hot Electrons for Efficient Photocatalytic H2O2 Production","authors":"Ronglan Pan, Wei Lv, Xin Ge, Xiong Huang, Qichuan Hu, Kejian Song, Qiong Liu, Haibo Xie, Bo Wu, Jili Yuan","doi":"10.1002/adfm.202414193","DOIUrl":null,"url":null,"abstract":"Photocatalytic oxygen reduction to H<sub>2</sub>O<sub>2</sub> based on g-C<sub>3</sub>N<sub>4</sub> has presented promising potential for sustainable solar-fuel production. Yet tuning the timescale of hot electron's lifetime to effectively participate in the surface reactions remains challenging. Here, an electron-deficient engineering strategy is developed by incorporating an electron-deficient structure (EDS) with different conjugate regions into large conjugate-heptazine framework (LCHF) of g-C<sub>3</sub>N<sub>4</sub> to steer hot electrons of the different timescales to effectively activate O<sub>2</sub> for efficient photocatalytic H<sub>2</sub>O<sub>2</sub> production. Femtosecond transientabsorption spectroscopy reveals that introducing EDS into LCHF can steer hot electron rapid transfer to the trapping sites of EDS and notably eliminate the deeply trapped electrons as well as enhance the shallow capture. It is demonstrated that pyromellitic dianhydride not only can tune the lifetime scale of hot electrons but also provide nonpolarized active sites to effectively activate O<sub>2</sub> forming H<sub>2</sub>O<sub>2</sub> with lower energy barrier via direct or stepwise 2e<sup>−</sup> pathways. This photocatalyst achieves an H<sub>2</sub>O<sub>2</sub> yield rate of 25.40 mmol g<sup>−1</sup> h<sup>−1</sup>, enabling an apparentquantumyield of 45.7% at 400 nm and a solar-to-chemical efficiency of 2.63%, outperforming the other reported photocatalysts. This work will shed light on the design of organic photocatalysts to tune hot electrons to effectively engage in the surface reaction.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":null,"pages":null},"PeriodicalIF":18.5000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202414193","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Photocatalytic oxygen reduction to H2O2 based on g-C3N4 has presented promising potential for sustainable solar-fuel production. Yet tuning the timescale of hot electron's lifetime to effectively participate in the surface reactions remains challenging. Here, an electron-deficient engineering strategy is developed by incorporating an electron-deficient structure (EDS) with different conjugate regions into large conjugate-heptazine framework (LCHF) of g-C3N4 to steer hot electrons of the different timescales to effectively activate O2 for efficient photocatalytic H2O2 production. Femtosecond transientabsorption spectroscopy reveals that introducing EDS into LCHF can steer hot electron rapid transfer to the trapping sites of EDS and notably eliminate the deeply trapped electrons as well as enhance the shallow capture. It is demonstrated that pyromellitic dianhydride not only can tune the lifetime scale of hot electrons but also provide nonpolarized active sites to effectively activate O2 forming H2O2 with lower energy barrier via direct or stepwise 2e pathways. This photocatalyst achieves an H2O2 yield rate of 25.40 mmol g−1 h−1, enabling an apparentquantumyield of 45.7% at 400 nm and a solar-to-chemical efficiency of 2.63%, outperforming the other reported photocatalysts. This work will shed light on the design of organic photocatalysts to tune hot electrons to effectively engage in the surface reaction.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大共轭庚嗪框架中的缺电子工程可有效穿梭热电子,实现高效光催化 H2O2 生产
基于 g-C3N4 的光催化氧还原 H2O2 为可持续太阳能燃料生产带来了巨大的潜力。然而,调整热电子寿命的时间尺度以有效参与表面反应仍然具有挑战性。在这里,通过在 g-C3N4 的大共轭庚嗪框架(LCHF)中加入具有不同共轭区的电子缺陷结构(EDS),开发了一种电子缺陷工程策略,以引导不同时间尺度的热电子有效激活 O2,从而实现高效的光催化 H2O2 生产。飞秒瞬态吸收光谱显示,在 LCHF 中引入 EDS 可以引导热电子快速转移到 EDS 的捕获位点,显著消除深层捕获电子并增强浅层捕获电子。研究表明,吡咯烷二酸酐不仅能调节热电子的寿命尺度,还能提供非极化活性位点,通过直接或逐步的 2e- 途径,以较低的能障有效激活 O2 形成 H2O2。这种光催化剂的 H2O2 产率达到 25.40 mmol g-1 h-1,在 400 纳米波长下的表观量子产率为 45.7%,太阳能转化为化学能的效率为 2.63%,优于其他已报道的光催化剂。这项工作将为有机光催化剂的设计提供启示,以调整热电子有效参与表面反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Enhanced Ferritin-Manganese Interaction by Nanoplatinum Growth Enabling Liver Fibrosis 3D Magnetic Resonance Visualization and Synergistic Therapy with Real-Time Monitoring Simultaneously Improving Radiative Decay and Reverse Intersystem Crossing in Space-Confined Through-Space Charge-Transfer (TSCT) Emitter by Strong Intermolecular TSCT Enabled by a Planar Donor Bi2O3 Nanosheets for Early Warning Thermal Runaway of Lithium Battery Electron-Deficient Engineering in Large-Conjugate-Heptazine Framework to Effectively Shuttle Hot Electrons for Efficient Photocatalytic H2O2 Production Achieving Unipolar Organic Transistors for Complementary Circuits by Selective Usage of Doped Organic Semiconductor Film Electrodes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1