Thermoelectric Cooling-Oriented Large Power Factor Realized in N-Type Bi2Te3 Via Deformation Potential Modulation and Giant Deformation

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Small Pub Date : 2024-09-20 DOI:10.1002/smll.202405182
Fudong Zhang, Mingkai He, Lujun Zhu, Beiquan Jia, Yalin Shi, Weishuai Wang, Zhanhui Peng, Pengfei Liang, Xiaolian Chao, Zupei Yang, Di Wu
{"title":"Thermoelectric Cooling-Oriented Large Power Factor Realized in N-Type Bi2Te3 Via Deformation Potential Modulation and Giant Deformation","authors":"Fudong Zhang, Mingkai He, Lujun Zhu, Beiquan Jia, Yalin Shi, Weishuai Wang, Zhanhui Peng, Pengfei Liang, Xiaolian Chao, Zupei Yang, Di Wu","doi":"10.1002/smll.202405182","DOIUrl":null,"url":null,"abstract":"Thermoelectric refrigeration, utilizing Peltier effect, has great potential in all-solid-state active cooling field near room temperature. The performance of a thermoelectric cooling device is highly determined by the power factor of consisting materials besides the figure of merit. In this work, it is demonstrated that successive addition of Cu and Nd can realize non-trivial modulation of deformation potential in n-type room temperature thermoelectric material Bi<sub>2</sub>Te<sub>2.7</sub>Se<sub>0.3</sub> and result in a significant increment of electron mobility and remarkably enhanced power factor. Following giant hot deformation process improves grain texturing and strengthens inter-layer interaction in Bi<sub>2</sub>Te<sub>2.7</sub>Se<sub>0.3</sub> lattice, further pushing the power factor to ≈47 µW cm<sup>−1</sup> K<sup>−2</sup> at 300 K and maximal figure of merit ZT<sub>max</sub> to ≈1.34 at 423 K with average ZT<sub>ave</sub> of ≈1.27 at 300–473 K. Moreover, robust compressive strength is enhanced to ≈146.6 MPa. The corresponding finite element simulations demonstrate large temperature differences Δ<i>T</i> of ≈70 K and a maximal coefficient of performance COP ≈ 10.6 (hot end temperature at 300 K), which can be achieved in a ten-pair thermoelectric cooling virtual module. The strategies and results as shown in this work can further advance the application of n-type Bi<sub>2</sub>Te<sub>3</sub> for thermoelectric cooling.","PeriodicalId":228,"journal":{"name":"Small","volume":null,"pages":null},"PeriodicalIF":13.0000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202405182","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Thermoelectric refrigeration, utilizing Peltier effect, has great potential in all-solid-state active cooling field near room temperature. The performance of a thermoelectric cooling device is highly determined by the power factor of consisting materials besides the figure of merit. In this work, it is demonstrated that successive addition of Cu and Nd can realize non-trivial modulation of deformation potential in n-type room temperature thermoelectric material Bi2Te2.7Se0.3 and result in a significant increment of electron mobility and remarkably enhanced power factor. Following giant hot deformation process improves grain texturing and strengthens inter-layer interaction in Bi2Te2.7Se0.3 lattice, further pushing the power factor to ≈47 µW cm−1 K−2 at 300 K and maximal figure of merit ZTmax to ≈1.34 at 423 K with average ZTave of ≈1.27 at 300–473 K. Moreover, robust compressive strength is enhanced to ≈146.6 MPa. The corresponding finite element simulations demonstrate large temperature differences ΔT of ≈70 K and a maximal coefficient of performance COP ≈ 10.6 (hot end temperature at 300 K), which can be achieved in a ten-pair thermoelectric cooling virtual module. The strategies and results as shown in this work can further advance the application of n-type Bi2Te3 for thermoelectric cooling.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过形变电势调制和巨变形在 N 型 Bi2Te3 中实现以热电冷却为导向的大功率因数
利用珀尔帖效应的热电制冷在室温附近的全固态主动冷却领域具有巨大潜力。热电半导体制冷设备的性能除了取决于优点系数外,还在很大程度上取决于组成材料的功率因数。本研究证明,在 n 型室温热电材料 Bi2Te2.7Se0.3 中连续添加铜和钕可以实现对形变电势的非三维调制,从而显著提高电子迁移率和功率因数。巨型热变形过程改善了 Bi2Te2.7Se0.3 晶格中的晶粒纹理并加强了层间相互作用,进一步将 300 K 时的功率因数推高至 ≈47 µW cm-1 K-2,将 423 K 时的最大功率因数 ZTmax 推高至 ≈1.34,将 300-473 K 时的平均 ZTave 推高至 ≈1.27。相应的有限元模拟表明,在一个十对热电冷却虚拟模块中,温差ΔT ≈70 K,最大性能系数 COP ≈ 10.6(300 K 时的热端温度)。这项工作中展示的策略和结果可进一步推动 n 型 Bi2Te3 在热电冷却领域的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
期刊最新文献
Thermoelectric Cooling-Oriented Large Power Factor Realized in N-Type Bi2Te3 Via Deformation Potential Modulation and Giant Deformation Interfacial Engineering of Nickel Oxide-Perovskite Interface with Amino Acid Complexed NiO to Improve Perovskite Solar Cell Performance Laser Irradiation Induced Electronic Structure Modulation of the Palladium-Based Nanosheets for Efficient Electrocatalysts Infrared Stealth Coating with Tunable Structural Color Based on ZnO Spheres Interfacial Self-Assembly Nanostructures: Constructions and Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1