Interfacial Self-Assembly Nanostructures: Constructions and Applications

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Small Pub Date : 2024-09-20 DOI:10.1002/smll.202405318
Yanyan Li, Dingyitai Liang, Ruimin Wang, Shouzhi Yang, Wanshan Liu, Qi Sang, Jun Pu, Yuning Wang, Kun Qian
{"title":"Interfacial Self-Assembly Nanostructures: Constructions and Applications","authors":"Yanyan Li, Dingyitai Liang, Ruimin Wang, Shouzhi Yang, Wanshan Liu, Qi Sang, Jun Pu, Yuning Wang, Kun Qian","doi":"10.1002/smll.202405318","DOIUrl":null,"url":null,"abstract":"Interfacial self-assembly nanoarrays refer to the spontaneously organized nanostructures at interfaces, relying on the intrinsic properties of involved materials, such as surface energy, molecular structure, and interactions. In recent years, the exponential growth of self-assembly nanotechnology has substantially expanded the utility of nanomaterials. Particularly, non-covalent interactions-based interfacial self-assembly represents a viable and promising approach for the synthesis of novel nanostructure. This review introduces the significance and current development status of interfacial self-assembly technology, focusing on the driving mode, application, and prospects of interfacial self-assembly nanoarrays over the past few years.","PeriodicalId":228,"journal":{"name":"Small","volume":null,"pages":null},"PeriodicalIF":13.0000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202405318","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Interfacial self-assembly nanoarrays refer to the spontaneously organized nanostructures at interfaces, relying on the intrinsic properties of involved materials, such as surface energy, molecular structure, and interactions. In recent years, the exponential growth of self-assembly nanotechnology has substantially expanded the utility of nanomaterials. Particularly, non-covalent interactions-based interfacial self-assembly represents a viable and promising approach for the synthesis of novel nanostructure. This review introduces the significance and current development status of interfacial self-assembly technology, focusing on the driving mode, application, and prospects of interfacial self-assembly nanoarrays over the past few years.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
界面自组装纳米结构:构造与应用
界面自组装纳米阵列是指依靠相关材料的内在特性,如表面能、分子结构和相互作用,在界面上自发组织的纳米结构。近年来,自组装纳米技术呈指数级增长,极大地扩展了纳米材料的用途。特别是基于非共价相互作用的界面自组装是合成新型纳米结构的一种可行且前景广阔的方法。本综述介绍了界面自组装技术的意义和发展现状,重点介绍了界面自组装纳米阵列近几年的发展模式、应用和前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
期刊最新文献
Thermoelectric Cooling-Oriented Large Power Factor Realized in N-Type Bi2Te3 Via Deformation Potential Modulation and Giant Deformation Interfacial Engineering of Nickel Oxide-Perovskite Interface with Amino Acid Complexed NiO to Improve Perovskite Solar Cell Performance Laser Irradiation Induced Electronic Structure Modulation of the Palladium-Based Nanosheets for Efficient Electrocatalysts Infrared Stealth Coating with Tunable Structural Color Based on ZnO Spheres Interfacial Self-Assembly Nanostructures: Constructions and Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1