Genetic Re-assessment of Population Subdivision in Yellowstone National Park Bison

IF 3 2区 生物学 Q2 EVOLUTIONARY BIOLOGY Journal of Heredity Pub Date : 2024-09-14 DOI:10.1093/jhered/esae050
Sam Stroupe, Chris Geremia, Rick L Wallen, P J White, James N Derr
{"title":"Genetic Re-assessment of Population Subdivision in Yellowstone National Park Bison","authors":"Sam Stroupe, Chris Geremia, Rick L Wallen, P J White, James N Derr","doi":"10.1093/jhered/esae050","DOIUrl":null,"url":null,"abstract":"Yellowstone National Park is home to the only plains bison population that has continually existed as wildlife, on the same landscape, through the population bottleneck of the late 19th century. Nevertheless, by the early 1900s, only 23 wild bison were known to have survived poaching. Salvation efforts included the addition of 18 females from Montana and 3 bulls from Texas to augment this population. A century later, nuclear microsatellite-based population level assessment revealed two genetically distinct bison sub-populations. However, in 2016 an analysis of mitochondrial haplotypes showed the two founding lineages were distributed throughout the park. This study is designed to delineate any current sub-structure in the Yellowstone bison population by strategically sampling the two major summer breeding herds and the two major winter ranges. Population level metrics were derived using the same microsatellite loci as the original study along with a newly developed set of highly informative bison specific Single Nucleotide Polymorphisms (SNPs). Our analyses reveal that the modern bison in Yellowstone National Park currently consist of one interbreeding population, comprised of two subunits.","PeriodicalId":54811,"journal":{"name":"Journal of Heredity","volume":"14 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Heredity","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jhered/esae050","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Yellowstone National Park is home to the only plains bison population that has continually existed as wildlife, on the same landscape, through the population bottleneck of the late 19th century. Nevertheless, by the early 1900s, only 23 wild bison were known to have survived poaching. Salvation efforts included the addition of 18 females from Montana and 3 bulls from Texas to augment this population. A century later, nuclear microsatellite-based population level assessment revealed two genetically distinct bison sub-populations. However, in 2016 an analysis of mitochondrial haplotypes showed the two founding lineages were distributed throughout the park. This study is designed to delineate any current sub-structure in the Yellowstone bison population by strategically sampling the two major summer breeding herds and the two major winter ranges. Population level metrics were derived using the same microsatellite loci as the original study along with a newly developed set of highly informative bison specific Single Nucleotide Polymorphisms (SNPs). Our analyses reveal that the modern bison in Yellowstone National Park currently consist of one interbreeding population, comprised of two subunits.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
黄石国家公园野牛种群细分的基因再评估
黄石国家公园是唯一一个平原野牛种群的家园,在 19 世纪末的种群瓶颈期,这些野牛一直作为野生动物生存在同一片土地上。然而,到 20 世纪初,已知只有 23 头野生野牛在偷猎中幸存下来。拯救工作包括从蒙大拿州引进 18 头雌性野牛和从得克萨斯州引进 3 头雄性野牛,以扩大这一种群。一个世纪后,基于核微卫星的种群水平评估发现了两个基因上截然不同的野牛亚种群。然而,2016 年对线粒体单倍型的分析表明,这两个始祖系分布在整个公园。本研究旨在通过对两个主要的夏季繁殖群和两个主要的冬季牧场进行战略性采样,划定黄石野牛种群目前的任何亚结构。使用与原始研究相同的微卫星位点以及新开发的一组具有高度信息量的野牛特异性单核苷酸多态性(SNPs),得出了种群水平指标。我们的分析表明,黄石国家公园中的现代野牛目前由一个杂交种群和两个亚单位组成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Heredity
Journal of Heredity 生物-遗传学
CiteScore
5.20
自引率
6.50%
发文量
63
审稿时长
6-12 weeks
期刊介绍: Over the last 100 years, the Journal of Heredity has established and maintained a tradition of scholarly excellence in the publication of genetics research. Virtually every major figure in the field has contributed to the journal. Established in 1903, Journal of Heredity covers organismal genetics across a wide range of disciplines and taxa. Articles include such rapidly advancing fields as conservation genetics of endangered species, population structure and phylogeography, molecular evolution and speciation, molecular genetics of disease resistance in plants and animals, genetic biodiversity and relevant computer programs.
期刊最新文献
Decoding Cattle (Bos taurus) Diacylglycerol Acyltransferase (DGAT) Gene Families: A Pathway to Functional Understanding. Pea aphid wing plasticity variation has a multigenic basis. Genetic structure of the northern house mosquito (Diptera: Culicidae) in a WNV-susceptible area. QTL mapping and identification of candidate genes for anthocyanidin accumulation in Salvia miltiorrhiza flowers. Chromosome length genome assembly of the stone marten (Martes foina, Mustelidae): a new view on one of the cornerstones in carnivore cytogenetics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1