首页 > 最新文献

Journal of Heredity最新文献

英文 中文
Cytogenomic analysis in Seriemas (Cariamidae): Insights into an Atypical Avian Karyotype.
IF 3 2区 生物学 Q2 EVOLUTIONARY BIOLOGY Pub Date : 2025-03-12 DOI: 10.1093/jhered/esaf012
Guilherme Mota Souza, Jhon Alex Dziechciarz Vidal, Ricardo Utsunomia, Geize Aparecida Deon, Edivaldo Herculano Correa de Oliveira, Raqueli Teresinha Franca, Fabio Porto-Foresti, Thomas Liehr, Fernando Henrique Santos de Souza, Rafael Kretschmer, Marcelo de Bello Cioffi

Contrasting with most bird species that present an ancestral-like karyotype (with 2n = 80), the only extant Cariamidae birds, the Red-legged (Cariama cristata) and Black-legged (Chunga burmeisteri) Seriemas, have high 2n and atypically large Z chromosomes. This study combined cytogenetic, bioinformatic, and genomic analyses to examine the distinctive characteristics of an unusual bird karyotype, with a focus on repetitive elements and sex chromosomes. Whole-genome alignments and chromosomal painting with a Z-chromosome-specific probe were also performed against the emu (a species with an ancestral-like karyotype). The satellitomes of C. cristata and C. burmeisteri were composed of only four and 6 long satDNAs, respectively. These satDNAs showed similarity with other repetitive sequences, mostly transposable elements, and were mapped in the pericentromeric regions of several chromosome pairs. CcrSat02-1104 mostly covered the Z and W sex chromosomes, besides being spread throughout additional chromosomes. Interstitial telomeric sites were not detected, even in the Z chromosome, and none of the 16 microsatellites tested showed positive signals on the C. cristata chromosomes. The genome alignments showed that the karyotype evolution that occurred in C. cristata may have involved significant chromosomal reshuffling, particularly fission. Notwithstanding certain internal inversions, the Z chromosome retained homology with that of the emu. However, repetitive sequences also accumulated on the Z chromosome, contributing to its enlargement relative to the pattern observed in ancestral avian groups.

{"title":"Cytogenomic analysis in Seriemas (Cariamidae): Insights into an Atypical Avian Karyotype.","authors":"Guilherme Mota Souza, Jhon Alex Dziechciarz Vidal, Ricardo Utsunomia, Geize Aparecida Deon, Edivaldo Herculano Correa de Oliveira, Raqueli Teresinha Franca, Fabio Porto-Foresti, Thomas Liehr, Fernando Henrique Santos de Souza, Rafael Kretschmer, Marcelo de Bello Cioffi","doi":"10.1093/jhered/esaf012","DOIUrl":"https://doi.org/10.1093/jhered/esaf012","url":null,"abstract":"<p><p>Contrasting with most bird species that present an ancestral-like karyotype (with 2n = 80), the only extant Cariamidae birds, the Red-legged (Cariama cristata) and Black-legged (Chunga burmeisteri) Seriemas, have high 2n and atypically large Z chromosomes. This study combined cytogenetic, bioinformatic, and genomic analyses to examine the distinctive characteristics of an unusual bird karyotype, with a focus on repetitive elements and sex chromosomes. Whole-genome alignments and chromosomal painting with a Z-chromosome-specific probe were also performed against the emu (a species with an ancestral-like karyotype). The satellitomes of C. cristata and C. burmeisteri were composed of only four and 6 long satDNAs, respectively. These satDNAs showed similarity with other repetitive sequences, mostly transposable elements, and were mapped in the pericentromeric regions of several chromosome pairs. CcrSat02-1104 mostly covered the Z and W sex chromosomes, besides being spread throughout additional chromosomes. Interstitial telomeric sites were not detected, even in the Z chromosome, and none of the 16 microsatellites tested showed positive signals on the C. cristata chromosomes. The genome alignments showed that the karyotype evolution that occurred in C. cristata may have involved significant chromosomal reshuffling, particularly fission. Notwithstanding certain internal inversions, the Z chromosome retained homology with that of the emu. However, repetitive sequences also accumulated on the Z chromosome, contributing to its enlargement relative to the pattern observed in ancestral avian groups.</p>","PeriodicalId":54811,"journal":{"name":"Journal of Heredity","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143626999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Non-invasive sampling reveals landscape genetic structure in the threatened ghost bat (Macroderma gigas) in an ore-rich region of Western Australia.
IF 3 2区 生物学 Q2 EVOLUTIONARY BIOLOGY Pub Date : 2025-03-11 DOI: 10.1093/jhered/esaf011
Linette Umbrello, Rujiporn Thavornkanlapachai, Shelley McArthur, Diana Prada, Chris Knuckey, Robyn Shaw, Peter Spencer, Kym Ottewell

Bat species are expected to exhibit low genetic structuring due to their high mobility. Thus, habitat connectivity is important to maintain gene flow and genetic diversity to retain evolutionary potential. The ghost bat (Macroderma gigas) is a large carnivorous bat endemic to Australia. Listed as Vulnerable, the species has a disjunct distribution across northern Australia and is patchily distributed at local scales due to limited roost habitat availability and anthropogenic impacts. Here, we survey the genetic diversity and structure of M. gigas in the isolated, arid Pilbara bioregion in Western Australia, primarily using non-invasively collected faecal DNA samples obtained from roosts. Faecal and tissue samples, representing 399 individuals, were genotyped using an optimised autosomal marker panel, with a subset also being sequenced at the mitochondrial D-Loop region to investigate historical gene flow. Spatially-explicit Bayesian clustering analyses of autosomal markers revealed low genetic structure and high levels of gene flow amongst the two Pilbara subregions, with some further structuring evident within the Hamersley Ranges. Mitochondrial DNA sequencing showed strong geographic structuring of haplotypes between the subpopulations, with only a small number of shared haplotypes indicating low levels of maternal gene flow. Such patterns across the two marker types are consistent with maternal philopatry and male-mediated gene flow that has previously been described for this species. Conservation actions for the ghost bat in the Pilbara should therefore recognise maintenance of connectivity between roosts and subregions is important to maintain gene flow for this threatened species in the face of anthropogenic threats.

{"title":"Non-invasive sampling reveals landscape genetic structure in the threatened ghost bat (Macroderma gigas) in an ore-rich region of Western Australia.","authors":"Linette Umbrello, Rujiporn Thavornkanlapachai, Shelley McArthur, Diana Prada, Chris Knuckey, Robyn Shaw, Peter Spencer, Kym Ottewell","doi":"10.1093/jhered/esaf011","DOIUrl":"https://doi.org/10.1093/jhered/esaf011","url":null,"abstract":"<p><p>Bat species are expected to exhibit low genetic structuring due to their high mobility. Thus, habitat connectivity is important to maintain gene flow and genetic diversity to retain evolutionary potential. The ghost bat (Macroderma gigas) is a large carnivorous bat endemic to Australia. Listed as Vulnerable, the species has a disjunct distribution across northern Australia and is patchily distributed at local scales due to limited roost habitat availability and anthropogenic impacts. Here, we survey the genetic diversity and structure of M. gigas in the isolated, arid Pilbara bioregion in Western Australia, primarily using non-invasively collected faecal DNA samples obtained from roosts. Faecal and tissue samples, representing 399 individuals, were genotyped using an optimised autosomal marker panel, with a subset also being sequenced at the mitochondrial D-Loop region to investigate historical gene flow. Spatially-explicit Bayesian clustering analyses of autosomal markers revealed low genetic structure and high levels of gene flow amongst the two Pilbara subregions, with some further structuring evident within the Hamersley Ranges. Mitochondrial DNA sequencing showed strong geographic structuring of haplotypes between the subpopulations, with only a small number of shared haplotypes indicating low levels of maternal gene flow. Such patterns across the two marker types are consistent with maternal philopatry and male-mediated gene flow that has previously been described for this species. Conservation actions for the ghost bat in the Pilbara should therefore recognise maintenance of connectivity between roosts and subregions is important to maintain gene flow for this threatened species in the face of anthropogenic threats.</p>","PeriodicalId":54811,"journal":{"name":"Journal of Heredity","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143607170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evidence for the existence of the distinct Alia camel breed contributes to the conservation of dromedary camels in Europe.
IF 3 2区 生物学 Q2 EVOLUTIONARY BIOLOGY Pub Date : 2025-03-05 DOI: 10.1093/jhered/esaf009
Marcel Smits
{"title":"Evidence for the existence of the distinct Alia camel breed contributes to the conservation of dromedary camels in Europe.","authors":"Marcel Smits","doi":"10.1093/jhered/esaf009","DOIUrl":"https://doi.org/10.1093/jhered/esaf009","url":null,"abstract":"","PeriodicalId":54811,"journal":{"name":"Journal of Heredity","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143568855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Absence of heterosis for hypoxia tolerance in F1 hybrids of Tigriopus californicus. Tigriopus californicus 的 F1 代杂交种在耐缺氧性方面缺乏异质性。
IF 3 2区 生物学 Q2 EVOLUTIONARY BIOLOGY Pub Date : 2025-03-01 DOI: 10.1093/jhered/esae061
Aimee Deconinck, Olivia F Madalone, Christopher S Willett

Hybridization produces a range of outcomes from advantageous to disadvantageous, and a goal of genetic research is to understand the gene interactions that generate these outcomes. Interactions between cytoplasmic elements, such as mitochondria, and the nucleus may be particularly vulnerable to accruing disadvantageous combinations as a result of their different rates of evolution. Consequently, mitonuclear incompatibilities may play an important role in hybrid outcomes even if their negative impacts could be masked for some fitness measures by heterosis in first-generation (F1) hybrids. We used Tigriopus californicus, a model system for mitonuclear incompatibilities that is also known for exhibiting heterosis in the F1 generation and outbreeding depression in later generations, to test whether heterosis or outbreeding depression would occur when mitonuclear mismatch was paired with a stress that heavily impacts mitochondrial processes-specifically, hypoxia. We generated 284 parental and 436 F1 hybrids from four population crosses (720 total) and compared parental and F1 populations for hypoxia tolerance. We observed that, on average, F1 hybrids were less likely to survive a hypoxia stress test than parental populations, although we did not detect a statistically significant trend (P = 0.246 to 0.614). This suggests that hypoxia may be a particularly intense stressor for mitonuclear coordination and hybridization outcomes vary by trait.

杂交会产生从有利到不利的一系列结果,而基因研究的一个目标就是了解产生这些结果的基因相互作用。线粒体等细胞质元素与细胞核之间的相互作用,由于进化速度不同,可能特别容易产生不利组合。然而,线粒体与细胞核之间的不相容性往往要到 F2 代及以后几代才会产生明显的影响。我们利用有丝分裂核互不相容的模式系统加利福尼亚褐虎(Tigriopus californicus)来测试缺氧是否比其他环境胁迫因素对有丝分裂核相互作用造成更大的胁迫。我们从四个群体杂交中产生了 284 个亲本和 436 个 F1 杂交种(共 720 个),并比较了亲本和 F1 群体对低氧的耐受性。我们观察到,平均而言,与亲本相比,F1 杂交种在低氧胁迫测试中存活的可能性较低(亲本:F1 系数从-0.04 到 0.14 不等,无显著差异)。这表明缺氧对有丝分裂核协调可能是一种特别强烈的压力,杂交结果因性状而异。
{"title":"Absence of heterosis for hypoxia tolerance in F1 hybrids of Tigriopus californicus.","authors":"Aimee Deconinck, Olivia F Madalone, Christopher S Willett","doi":"10.1093/jhered/esae061","DOIUrl":"10.1093/jhered/esae061","url":null,"abstract":"<p><p>Hybridization produces a range of outcomes from advantageous to disadvantageous, and a goal of genetic research is to understand the gene interactions that generate these outcomes. Interactions between cytoplasmic elements, such as mitochondria, and the nucleus may be particularly vulnerable to accruing disadvantageous combinations as a result of their different rates of evolution. Consequently, mitonuclear incompatibilities may play an important role in hybrid outcomes even if their negative impacts could be masked for some fitness measures by heterosis in first-generation (F1) hybrids. We used Tigriopus californicus, a model system for mitonuclear incompatibilities that is also known for exhibiting heterosis in the F1 generation and outbreeding depression in later generations, to test whether heterosis or outbreeding depression would occur when mitonuclear mismatch was paired with a stress that heavily impacts mitochondrial processes-specifically, hypoxia. We generated 284 parental and 436 F1 hybrids from four population crosses (720 total) and compared parental and F1 populations for hypoxia tolerance. We observed that, on average, F1 hybrids were less likely to survive a hypoxia stress test than parental populations, although we did not detect a statistically significant trend (P = 0.246 to 0.614). This suggests that hypoxia may be a particularly intense stressor for mitonuclear coordination and hybridization outcomes vary by trait.</p>","PeriodicalId":54811,"journal":{"name":"Journal of Heredity","volume":" ","pages":"149-158"},"PeriodicalIF":3.0,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142523718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimal outbreeding is shaped during larval life history in the splash pool copepod Tigriopus californicus. 溅池桡足类(Tigriopus californicus)在幼虫生活史中形成了最佳的外繁殖。
IF 3 2区 生物学 Q2 EVOLUTIONARY BIOLOGY Pub Date : 2025-03-01 DOI: 10.1093/jhered/esae039
Kevin C Olsen, Luis D Escareno Medina, Felipe S Barreto, Suzanne Edmands, Ronald S Burton

Inbreeding and outbreeding depression are dynamic forms of selection critical to mating system evolution and the efficacy of conservation biology. Most evidence on how the relative severity and timing of these forces are shaped is confined to self-fertilization, distant outcrossing, and intermediate "optimal outcrossing" in hermaphrodites. We tested the notion that closed population demographics may reduce and delay the costs of inbreeding relative to distant outbreeding in an intertidal copepod with separate sexes and a biphasic larval/post-metamorphic life history (Tigriopus californicus). At three lifecycle stages (fecundity, metamorphosis, and post-metamorphosis), we quantified the effects of inbreeding and outbreeding in crosses with varying degrees of recent common ancestry. Although inbreeding and outbreeding depression have distinct genetic mechanisms, both manifested the same stage-specific consequences for fitness. Inbreeding and outbreeding depression were not apparent for fecundity, post-metamorphic survival, sex ratio, or the ability to acquire mates, but inbreeding between full siblings and outbreeding between interpopulation hybrids reduced the fraction of offspring that completed metamorphosis by 32% and 47%, respectively. On average, the effects of inbreeding on metamorphic rate were weaker and nearly twice as variable among families than those of outbreeding, suggesting genetic load was less pervasive than the incompatibilities accrued between divergent populations. Overall, our results indicate the transition from larval to juvenile life stages is markedly susceptible to both inbreeding and outbreeding depression in T. californicus. We suggest stage-specific selection acting concurrently with the timing of metamorphosis may be an instrumental factor in shaping reproductive optima in species with complex life histories.

近交和外交抑制是一种动态的选择形式,对交配系统的进化和保护生物学的功效至关重要。关于这些力量的相对严重程度和形成时间,大多数证据仅限于雌雄同体的自交、远缘外交和中间 "最佳外交"。我们在潮间带桡足类(Tigriopus californicus)中测试了封闭种群的人口统计学可能会减少和延迟近交成本,而远交成本则相对较低,这种桡足类具有两性分离和双相幼虫/变态后生活史(Tigriopus californicus)。在三个生命周期阶段(繁殖期、变态期和变态后),我们量化了近交和远交对具有不同程度近期共同祖先的杂交的影响。虽然近交抑郁和外交抑郁具有不同的遗传机制,但两者对适应性的影响表现出相同的阶段特异性。近交抑郁和外交抑郁对繁殖力、变态后存活率、性别比和获得配偶的能力没有明显影响,但同胞间的近交和种群间杂交的外交使完成变态的后代比例分别降低了32%和47%。平均而言,近亲繁殖对变态率的影响较弱,而且不同种群之间的差异几乎是外交影响的两倍,这表明遗传负荷不如不同种群之间的不兼容性那么普遍。总之,我们的研究结果表明,加州蛙从幼虫到幼体生命阶段的过渡明显容易受到近交抑郁和外交抑郁的影响。我们认为,在具有复杂生命史的物种中,与变态时间同时发生的阶段特异性选择可能是形成最佳繁殖的一个重要因素。
{"title":"Optimal outbreeding is shaped during larval life history in the splash pool copepod Tigriopus californicus.","authors":"Kevin C Olsen, Luis D Escareno Medina, Felipe S Barreto, Suzanne Edmands, Ronald S Burton","doi":"10.1093/jhered/esae039","DOIUrl":"10.1093/jhered/esae039","url":null,"abstract":"<p><p>Inbreeding and outbreeding depression are dynamic forms of selection critical to mating system evolution and the efficacy of conservation biology. Most evidence on how the relative severity and timing of these forces are shaped is confined to self-fertilization, distant outcrossing, and intermediate \"optimal outcrossing\" in hermaphrodites. We tested the notion that closed population demographics may reduce and delay the costs of inbreeding relative to distant outbreeding in an intertidal copepod with separate sexes and a biphasic larval/post-metamorphic life history (Tigriopus californicus). At three lifecycle stages (fecundity, metamorphosis, and post-metamorphosis), we quantified the effects of inbreeding and outbreeding in crosses with varying degrees of recent common ancestry. Although inbreeding and outbreeding depression have distinct genetic mechanisms, both manifested the same stage-specific consequences for fitness. Inbreeding and outbreeding depression were not apparent for fecundity, post-metamorphic survival, sex ratio, or the ability to acquire mates, but inbreeding between full siblings and outbreeding between interpopulation hybrids reduced the fraction of offspring that completed metamorphosis by 32% and 47%, respectively. On average, the effects of inbreeding on metamorphic rate were weaker and nearly twice as variable among families than those of outbreeding, suggesting genetic load was less pervasive than the incompatibilities accrued between divergent populations. Overall, our results indicate the transition from larval to juvenile life stages is markedly susceptible to both inbreeding and outbreeding depression in T. californicus. We suggest stage-specific selection acting concurrently with the timing of metamorphosis may be an instrumental factor in shaping reproductive optima in species with complex life histories.</p>","PeriodicalId":54811,"journal":{"name":"Journal of Heredity","volume":" ","pages":"159-169"},"PeriodicalIF":3.0,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141762718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reference genome for the endangered, genetically subdivided, northern tidewater goby, Eucyclogobius newberryi. 濒危、基因细分的北部潮水虾虎鱼 Eucyclogobius newberryi 的参考基因组。
IF 3 2区 生物学 Q2 EVOLUTIONARY BIOLOGY Pub Date : 2025-03-01 DOI: 10.1093/jhered/esae053
David K Jacobs, Andrew Kinziger, Mira Abrecht, W Tyler McCraney, Benjamin A Hà, Brenton T Spies, Elizabeth Heath-Heckman, Mohan P A Marimuhtu, Oanh Nguyen, Colin W Fairbairn, William E Seligmann, Merly Escalona, Courtney Miller, H Bradley Shaffer

The federally endangered sister species, Eucyclogobius newberryi (northern tidewater goby, NTG) and E. kristinae (southern tidewater goby) comprise the California endemic genus Eucyclogobius, which historically occurred in all coastal California counties. Isolated lagoons that only intermittently connect to the sea are their primary habitat. Reproduction occurs during lagoon closure, minimizing marine dispersal and generating the most genetically subdivided vertebrate genus on the California coast. We present a new genome assembly for E. newberryi using HiFi long reads and Hi-C chromatin-proximity sequencing. The 980 Mb E. newberryi reference genome has an N50 of 34 Mb with 22 well-described scaffolds comprising 88% of the genome and a complete BUSCO (Benchmarking Universal Single-Copy Orthologs) score of 96.7%. This genome will facilitate studies addressing selection, drift, and metapopulation genetics in subdivided populations, as well as the persistence of the critically endangered E. kristinae, where reintroduction will be an essential element of conservation actions for recovery. It also provides tools critical to the recovery of the genetically distinct management units in the NTG, as well as broader ecological and evolutionary studies of gobies, the most speciose family of fishes in the world.

Eucyclogobius newberryi(北部潮水虾虎鱼)和 E. kristinae(南部潮水虾虎鱼)组成了加州特有的 Eucyclogobius 属,历史上曾出现在加州所有沿海县。它们的主要栖息地是与海洋间歇性相连的孤立泻湖。它们在泻湖关闭期间进行繁殖,从而最大程度地减少了海洋传播,并产生了加利福尼亚海岸上基因细分最多的脊椎动物属。我们利用 HiFi 长读数和 Hi-C 染色质邻近测序技术为 E. newberryi 进行了新的基因组组装。980Mb 的 E. newberryi 参考基因组的 N50 为 34Mb,有 22 个描述良好的支架,占基因组的 88%,完整的 BUSCO 得分为 96.7%。该基因组将有助于研究细分种群中的选择、漂移和元种群遗传学,以及极度濒危的 E. kristinae 的持续性,在这种情况下,重新引入将是恢复保护行动的一个重要因素。它还提供了对北部潮水虾虎鱼中不同基因管理单元的恢复至关重要的工具,以及对虾虎鱼这一世界上物种最多的鱼类家族进行更广泛的生态和进化研究的工具。
{"title":"Reference genome for the endangered, genetically subdivided, northern tidewater goby, Eucyclogobius newberryi.","authors":"David K Jacobs, Andrew Kinziger, Mira Abrecht, W Tyler McCraney, Benjamin A Hà, Brenton T Spies, Elizabeth Heath-Heckman, Mohan P A Marimuhtu, Oanh Nguyen, Colin W Fairbairn, William E Seligmann, Merly Escalona, Courtney Miller, H Bradley Shaffer","doi":"10.1093/jhered/esae053","DOIUrl":"10.1093/jhered/esae053","url":null,"abstract":"<p><p>The federally endangered sister species, Eucyclogobius newberryi (northern tidewater goby, NTG) and E. kristinae (southern tidewater goby) comprise the California endemic genus Eucyclogobius, which historically occurred in all coastal California counties. Isolated lagoons that only intermittently connect to the sea are their primary habitat. Reproduction occurs during lagoon closure, minimizing marine dispersal and generating the most genetically subdivided vertebrate genus on the California coast. We present a new genome assembly for E. newberryi using HiFi long reads and Hi-C chromatin-proximity sequencing. The 980 Mb E. newberryi reference genome has an N50 of 34 Mb with 22 well-described scaffolds comprising 88% of the genome and a complete BUSCO (Benchmarking Universal Single-Copy Orthologs) score of 96.7%. This genome will facilitate studies addressing selection, drift, and metapopulation genetics in subdivided populations, as well as the persistence of the critically endangered E. kristinae, where reintroduction will be an essential element of conservation actions for recovery. It also provides tools critical to the recovery of the genetically distinct management units in the NTG, as well as broader ecological and evolutionary studies of gobies, the most speciose family of fishes in the world.</p>","PeriodicalId":54811,"journal":{"name":"Journal of Heredity","volume":" ","pages":"170-178"},"PeriodicalIF":3.0,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11879183/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142378628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microplastic exposure is associated with epigenomic effects in the model organism Pimephales promelas (fathead minnow). 微塑料暴露与模式生物黑头鲦鱼(Pimephales promelas)的表观基因组效应有关。
IF 3 2区 生物学 Q2 EVOLUTIONARY BIOLOGY Pub Date : 2025-03-01 DOI: 10.1093/jhered/esae027
Miranda J Wade, Kennedy Bucci, Chelsea M Rochman, Mariah H Meek

Microplastics have evolutionary and ecological impacts across species, affecting organisms' development, reproduction, and behavior along with contributing to genotoxicity and stress. As plastic pollution is increasing and ubiquitous, gaining a better understanding of organismal responses to microplastics is necessary. Epigenetic processes such as DNA methylation are heritable forms of molecular regulation influenced by environmental conditions. Therefore, determining such epigenetic responses to microplastics will reveal potential chronic consequences of this environmental pollutant. We performed an experiment across two generations of fathead minnows (Pimephales promelas) to elucidate the transgenerational epigenetic effects of microplastic exposure. We exposed the first generation of fish to four different treatments of microplastics: two concentrations of each of pre-consumer polyethylene (PE) and PE collected from Lake Ontario. We then raised the first filial generation with no microplastic exposure. We used enzymatic methylation sequencing on adult liver tissue and homogenized larvae to evaluate DNA methylation differences among treatments, sexes, and generations. Our findings show the origin of the plastic had a larger effect in female minnows whereas the effect of concentration was stronger in the males. We also observed transgenerational effects, highlighting a mechanism in which parents can pass on the effects of microplastic exposure to their offspring. Many of the genes found within differentially methylated regions in our analyses are known to interact with estrogenic chemicals associated with plastic and are related to metabolism. This study highlights the persistent and potentially serious impacts of microplastic pollution on gene regulation in freshwater systems.

微塑料会对不同物种的进化和生态产生影响,影响生物的发育、繁殖和行为,并导致基因毒性和压力。随着塑料污染日益严重且无处不在,有必要更好地了解生物体对微塑料的反应。DNA 甲基化等表观遗传过程是受环境条件影响的可遗传的分子调控形式。因此,确定生物对微塑料的表观遗传学反应将揭示这种环境污染物的潜在慢性后果。我们对两代黑头呆鱼(Pimephales promelas)进行了实验,以阐明微塑料暴露的跨代表观遗传效应。我们将第一代鱼暴露于四种不同的微塑料处理中:两种浓度的消费前聚乙烯(PE)和从安大略湖收集的聚乙烯。然后,我们在不接触微塑料的情况下饲养了第一代孝鱼。我们使用酶法甲基化测序法对成虫肝脏组织和匀浆幼虫进行检测,以评估不同处理、性别和世代之间的 DNA 甲基化差异。我们的研究结果表明,塑料的来源对雌性小鱼的影响更大,而浓度对雄性小鱼的影响更大。我们还观察到了跨代效应,这凸显了父母将接触微塑料的影响传递给后代的机制。在我们的分析中,在不同甲基化区域内发现的许多基因都与塑料中的雌激素化学物质相互作用,并与新陈代谢有关。这项研究凸显了微塑料污染对淡水系统基因调控的持续和潜在的严重影响。
{"title":"Microplastic exposure is associated with epigenomic effects in the model organism Pimephales promelas (fathead minnow).","authors":"Miranda J Wade, Kennedy Bucci, Chelsea M Rochman, Mariah H Meek","doi":"10.1093/jhered/esae027","DOIUrl":"10.1093/jhered/esae027","url":null,"abstract":"<p><p>Microplastics have evolutionary and ecological impacts across species, affecting organisms' development, reproduction, and behavior along with contributing to genotoxicity and stress. As plastic pollution is increasing and ubiquitous, gaining a better understanding of organismal responses to microplastics is necessary. Epigenetic processes such as DNA methylation are heritable forms of molecular regulation influenced by environmental conditions. Therefore, determining such epigenetic responses to microplastics will reveal potential chronic consequences of this environmental pollutant. We performed an experiment across two generations of fathead minnows (Pimephales promelas) to elucidate the transgenerational epigenetic effects of microplastic exposure. We exposed the first generation of fish to four different treatments of microplastics: two concentrations of each of pre-consumer polyethylene (PE) and PE collected from Lake Ontario. We then raised the first filial generation with no microplastic exposure. We used enzymatic methylation sequencing on adult liver tissue and homogenized larvae to evaluate DNA methylation differences among treatments, sexes, and generations. Our findings show the origin of the plastic had a larger effect in female minnows whereas the effect of concentration was stronger in the males. We also observed transgenerational effects, highlighting a mechanism in which parents can pass on the effects of microplastic exposure to their offspring. Many of the genes found within differentially methylated regions in our analyses are known to interact with estrogenic chemicals associated with plastic and are related to metabolism. This study highlights the persistent and potentially serious impacts of microplastic pollution on gene regulation in freshwater systems.</p>","PeriodicalId":54811,"journal":{"name":"Journal of Heredity","volume":" ","pages":"113-125"},"PeriodicalIF":3.0,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11879203/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140923715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sensitivity of transcriptomics: Different samples and methodology alter conclusions in Gulf pipefish (Syngnathus scovelli). 转录组学的敏感性:不同样本和方法改变了海湾琵琶鱼(Syngnathus scovelli)的结论。
IF 3 2区 生物学 Q2 EVOLUTIONARY BIOLOGY Pub Date : 2025-03-01 DOI: 10.1093/jhered/esae067
Bernadette D Johnson, Emily Rose, Adam G Jones

Transcriptome analysis has become a central tool in evolutionary and functional genomics. However, variation among biological samples and analysis techniques can greatly influence results, potentially compromising insights into the phenomenon under study. Here, we evaluate differences in the brain transcriptome between female and male Gulf pipefish (Syngnathus scovelli). We perform comparisons between results from entire pipelines for brain transcriptome assembly, quantification, and analysis. We also offer a unique biological comparison between two sampling instances (Redfish Bay: n = 15, Port Lavaca: n = 7). Our results demonstrate crucial shortcomings with current experimental approaches. We found high variation within our results that was driven by both technical differences between pipelines and biological differences between pipefish samples. In our analysis of highly expressed genes, we found that the choice of methods influenced the degree of contamination or noise included in the identified genes. Notably, genes identified within the same pipeline were more similar than any other comparison. Our differential expression analysis revealed that both methodology and sampling location influenced the quantity and consistency of statistically significant transcripts. In the context of these results, we offer modifications to current practices that may increase the robustness of transcriptome-based conclusions. In particular, the use of a reference-guided assembly and an increase in sample sizes are likely to improve resistance to noise or error.

转录组分析已成为进化和功能基因组学的核心工具。然而,生物样本和分析技术之间的差异会极大地影响分析结果,从而有可能影响对所研究现象的深入了解。在这里,我们评估了雌性和雄性海湾琵琶鱼(Syngnathus scovelli)大脑转录组的差异。我们对整个脑转录组组装、量化和分析流水线的结果进行了比较。我们还对两个取样实例(红鱼湾:n = 15;拉瓦卡港:n = 7)进行了独特的生物学比较。我们的结果表明了当前实验方法的关键缺陷。我们发现,由于管道之间的技术差异和琵琶鱼样本之间的生物差异,我们的结果存在很大差异。在对高表达基因的分析中,我们发现方法的选择会影响已鉴定基因的污染或噪音程度。值得注意的是,在同一管道中鉴定出的基因比其他比较方法更相似。我们的差异表达分析表明,方法和取样位置都会影响具有统计学意义的转录本的数量和一致性。根据这些结果,我们对目前的做法提出了修改意见,以提高基于转录组的结论的稳健性。特别是,使用参考文献指导的组装和增加样本量可能会提高对噪音或误差的抵抗力。
{"title":"Sensitivity of transcriptomics: Different samples and methodology alter conclusions in Gulf pipefish (Syngnathus scovelli).","authors":"Bernadette D Johnson, Emily Rose, Adam G Jones","doi":"10.1093/jhered/esae067","DOIUrl":"10.1093/jhered/esae067","url":null,"abstract":"<p><p>Transcriptome analysis has become a central tool in evolutionary and functional genomics. However, variation among biological samples and analysis techniques can greatly influence results, potentially compromising insights into the phenomenon under study. Here, we evaluate differences in the brain transcriptome between female and male Gulf pipefish (Syngnathus scovelli). We perform comparisons between results from entire pipelines for brain transcriptome assembly, quantification, and analysis. We also offer a unique biological comparison between two sampling instances (Redfish Bay: n = 15, Port Lavaca: n = 7). Our results demonstrate crucial shortcomings with current experimental approaches. We found high variation within our results that was driven by both technical differences between pipelines and biological differences between pipefish samples. In our analysis of highly expressed genes, we found that the choice of methods influenced the degree of contamination or noise included in the identified genes. Notably, genes identified within the same pipeline were more similar than any other comparison. Our differential expression analysis revealed that both methodology and sampling location influenced the quantity and consistency of statistically significant transcripts. In the context of these results, we offer modifications to current practices that may increase the robustness of transcriptome-based conclusions. In particular, the use of a reference-guided assembly and an increase in sample sizes are likely to improve resistance to noise or error.</p>","PeriodicalId":54811,"journal":{"name":"Journal of Heredity","volume":" ","pages":"139-148"},"PeriodicalIF":3.0,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11879219/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142640233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mutation of mpv17 results in loss of iridophores due to mitochondrial dysfunction in tilapia. mpv17 基因突变会导致罗非鱼线粒体功能障碍而失去虹膜。
IF 3 2区 生物学 Q2 EVOLUTIONARY BIOLOGY Pub Date : 2025-03-01 DOI: 10.1093/jhered/esae034
Jia Xu, Peng Li, Mengmeng Xu, Chenxu Wang, Thomas D Kocher, Deshou Wang

Mpv17 (mitochondrial inner membrane protein MPV17) deficiency causes severe mitochondrial DNA depletion syndrome in mammals and loss of pigmentation of iridophores and a significant decrease of melanophores in zebrafish. The reasons for this are still unclear. In this study, we established an mpv17 homozygous mutant line in Nile tilapia. The developing mutants are transparent due to the loss of iridophores and aggregation of pigment granules in the melanophores and disappearance of the vertical pigment bars on the side of the fish. Transcriptome analysis using the skin of fish at 30 dpf (days post fertilization) revealed that the genes related to purine (especially pnp4a) and melanin synthesis were significantly downregulated. However, administration of guanine diets failed to rescue the phenotype of the mutants. In addition, no obvious apoptosis signals were observed in the iris of the mutants by TUNEL staining. Significant downregulation of genes related to iridophore differentiation was detected by qPCR. Insufficient ATP, as revealed by ATP assay, α-MSH treatment, and adcy5 mutational analysis, might account for the defects of melanophores in mpv17 mutants. Several tissues displayed less mtDNA and decreased ATP levels. Taken together, these results indicated that mutation of mpv17 led to mitochondrial dTMP deficiency, followed by impaired mtDNA content and mitochondrial function, which in turn, led to loss of iridophores and a transparent body color in tilapia.

Mpv17(线粒体内膜蛋白 MPV17)缺乏症会导致哺乳动物出现严重的线粒体 DNA 缺失综合征,斑马鱼则会出现虹膜色素缺失和黑素细胞显著减少。其原因尚不清楚。在这项研究中,我们在尼罗罗非鱼中建立了一个 mpv17 同源突变体系。发育中的突变体由于失去虹膜、黑色素颗粒聚集以及鱼体侧面垂直色素条的消失而变得透明。利用受精后 30 dpf(天数)的鱼皮进行转录组分析发现,与嘌呤(尤其是 pnp4a)和黑色素合成有关的基因明显下调。然而,施用鸟嘌呤饮食未能挽救突变体的表型。此外,通过 TUNEL 染色法在突变体的虹膜中没有观察到明显的细胞凋亡信号。通过 qPCR 检测到与虹膜分化相关的基因显著下调。ATP测定、α-MSH处理和adcy5突变分析表明,ATP不足可能是mpv17突变体黑素细胞缺陷的原因。一些组织显示出较少的mtDNA和较低的ATP水平。综上所述,这些结果表明,mpv17突变导致线粒体dTMP缺乏,继而损害mtDNA含量和线粒体功能,进而导致罗非鱼虹彩体缺失和体色透明。
{"title":"Mutation of mpv17 results in loss of iridophores due to mitochondrial dysfunction in tilapia.","authors":"Jia Xu, Peng Li, Mengmeng Xu, Chenxu Wang, Thomas D Kocher, Deshou Wang","doi":"10.1093/jhered/esae034","DOIUrl":"10.1093/jhered/esae034","url":null,"abstract":"<p><p>Mpv17 (mitochondrial inner membrane protein MPV17) deficiency causes severe mitochondrial DNA depletion syndrome in mammals and loss of pigmentation of iridophores and a significant decrease of melanophores in zebrafish. The reasons for this are still unclear. In this study, we established an mpv17 homozygous mutant line in Nile tilapia. The developing mutants are transparent due to the loss of iridophores and aggregation of pigment granules in the melanophores and disappearance of the vertical pigment bars on the side of the fish. Transcriptome analysis using the skin of fish at 30 dpf (days post fertilization) revealed that the genes related to purine (especially pnp4a) and melanin synthesis were significantly downregulated. However, administration of guanine diets failed to rescue the phenotype of the mutants. In addition, no obvious apoptosis signals were observed in the iris of the mutants by TUNEL staining. Significant downregulation of genes related to iridophore differentiation was detected by qPCR. Insufficient ATP, as revealed by ATP assay, α-MSH treatment, and adcy5 mutational analysis, might account for the defects of melanophores in mpv17 mutants. Several tissues displayed less mtDNA and decreased ATP levels. Taken together, these results indicated that mutation of mpv17 led to mitochondrial dTMP deficiency, followed by impaired mtDNA content and mitochondrial function, which in turn, led to loss of iridophores and a transparent body color in tilapia.</p>","PeriodicalId":54811,"journal":{"name":"Journal of Heredity","volume":" ","pages":"101-112"},"PeriodicalIF":3.0,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141472787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantitative trait loci concentrate in specific regions of the Mexican cavefish genome and reveal key candidate genes for cave-associated evolution. 定量性状位点集中在墨西哥洞穴鱼基因组的特定区域,揭示了洞穴相关进化的关键候选基因。
IF 3 2区 生物学 Q2 EVOLUTIONARY BIOLOGY Pub Date : 2025-03-01 DOI: 10.1093/jhered/esae040
Jonathan Wiese, Emilie Richards, Johanna E Kowalko, Suzanne E McGaugh

A major goal of modern biology is connecting phenotype with its underlying genetic basis. The Mexican cavefish (Astyanax mexicanus), a characin fish species comprised of a surface ecotype and a cave-derived ecotype, is well suited as a model to study the genetic mechanisms underlying adaptation to extreme environments. Here, we map 206 previously published quantitative trait loci (QTL) for cave-derived traits in A. mexicanus to the newest version of the surface fish genome assembly, AstMex3. These analyses revealed that QTL clusters in the genome more than expected by chance, and this clustering is not explained by the distribution of genes in the genome. To investigate whether certain characteristics of the genome facilitate phenotypic evolution, we tested whether genomic characteristics associated with increased opportunities for mutation, such as highly mutagenic CpG sites, are reliable predictors of the sites of trait evolution but did not find any significant trends. Finally, we combined the QTL map with previously collected expression and selection data to identify 36 candidate genes that may underlie the repeated evolution of cave phenotypes, including rgrb, which is predicted to be involved in phototransduction. We found this gene has disrupted exons in all non-hybrid cave populations but intact reading frames in surface fish. Overall, our results suggest specific regions of the genome may play significant roles in driving adaptation to the cave environment in A. mexicanus and demonstrate how this compiled dataset can facilitate our understanding of the genetic basis of repeated evolution in the Mexican cavefish.

现代生物学的一个主要目标是将表型与其潜在的遗传基础联系起来。墨西哥洞穴鱼(Astyanax mexicanus)是一种由地表生态型和洞穴生态型组成的炭化鱼类,非常适合作为研究适应极端环境的遗传机制的模型。在这里,我们将 206 个先前公布的墨西哥鳕洞穴衍生性状的数量性状位点(QTL)映射到最新版本的表层鱼类基因组组装--AstMex3。这些分析表明,QTL在基因组中的聚类超出了偶然性的预期,而这种聚类并不能用基因在基因组中的分布来解释。为了研究基因组的某些特征是否促进了表型的进化,我们测试了与突变机会增加有关的基因组特征(如高突变CpG位点)是否是性状进化位点的可靠预测因子,但没有发现任何显著趋势。最后,我们将 QTL 图谱与之前收集的表达和选择数据相结合,确定了 36 个候选基因,这些基因可能是洞穴表型重复进化的基础,其中包括 rgrb,该基因被预测参与光传导。我们发现,在所有非杂交洞穴种群中,该基因的外显子均被破坏,但在表层鱼类中,该基因的阅读框完好无损。总之,我们的研究结果表明,基因组的特定区域可能在推动墨西哥洞穴鱼适应洞穴环境方面发挥了重要作用,并证明了这一汇编数据集如何有助于我们理解墨西哥洞穴鱼重复进化的遗传基础。
{"title":"Quantitative trait loci concentrate in specific regions of the Mexican cavefish genome and reveal key candidate genes for cave-associated evolution.","authors":"Jonathan Wiese, Emilie Richards, Johanna E Kowalko, Suzanne E McGaugh","doi":"10.1093/jhered/esae040","DOIUrl":"10.1093/jhered/esae040","url":null,"abstract":"<p><p>A major goal of modern biology is connecting phenotype with its underlying genetic basis. The Mexican cavefish (Astyanax mexicanus), a characin fish species comprised of a surface ecotype and a cave-derived ecotype, is well suited as a model to study the genetic mechanisms underlying adaptation to extreme environments. Here, we map 206 previously published quantitative trait loci (QTL) for cave-derived traits in A. mexicanus to the newest version of the surface fish genome assembly, AstMex3. These analyses revealed that QTL clusters in the genome more than expected by chance, and this clustering is not explained by the distribution of genes in the genome. To investigate whether certain characteristics of the genome facilitate phenotypic evolution, we tested whether genomic characteristics associated with increased opportunities for mutation, such as highly mutagenic CpG sites, are reliable predictors of the sites of trait evolution but did not find any significant trends. Finally, we combined the QTL map with previously collected expression and selection data to identify 36 candidate genes that may underlie the repeated evolution of cave phenotypes, including rgrb, which is predicted to be involved in phototransduction. We found this gene has disrupted exons in all non-hybrid cave populations but intact reading frames in surface fish. Overall, our results suggest specific regions of the genome may play significant roles in driving adaptation to the cave environment in A. mexicanus and demonstrate how this compiled dataset can facilitate our understanding of the genetic basis of repeated evolution in the Mexican cavefish.</p>","PeriodicalId":54811,"journal":{"name":"Journal of Heredity","volume":" ","pages":"89-100"},"PeriodicalIF":3.0,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141857224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Heredity
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1