Xin Cao,Wenlong Tang,Huimin Gao,Yifan Wang,Yi Chen,Chengyi Gao,Fengjun Zhao,Linzhi Su
{"title":"SODL-IR-FISTA: sparse online dictionary learning with iterative reduction FISTA for cone-beam X-ray luminescence computed tomography.","authors":"Xin Cao,Wenlong Tang,Huimin Gao,Yifan Wang,Yi Chen,Chengyi Gao,Fengjun Zhao,Linzhi Su","doi":"10.1364/boe.531828","DOIUrl":null,"url":null,"abstract":"Cone beam X-ray luminescence computed tomography (CB-XLCT) is an emerging imaging technique with potential for early 3D tumor detection. However, the reconstruction challenge due to low light absorption and high scattering in tissues makes it a difficult inverse problem. In this study, the online dictionary learning (ODL) method, combined with iterative reduction FISTA (IR-FISTA), has been utilized to achieve high-quality reconstruction. Our method integrates IR-FISTA for efficient and accurate sparse coding, followed by an online stochastic approximation for dictionary updates, effectively capturing the sparse features inherent to the problem. Additionally, a re-sparse step is introduced to enhance the sparsity of the solution, making it better suited for CB-XLCT reconstruction. Numerical simulations and in vivo experiments were conducted to assess the performance of the method. The SODL-IR-FISTA achieved the smallest location error of 0.325 mm in in vivo experiments, which is 58% and 45% of the IVTCG-L 1 (0.562 mm) and OMP-L 0 (0.721 mm), respectively. Additionally, it has the highest DICE similarity coefficient, which is 0.748. The results demonstrate that our approach outperforms traditional methods in terms of localization precision, shape restoration, robustness, and practicality in live subjects.","PeriodicalId":8969,"journal":{"name":"Biomedical optics express","volume":"11 1","pages":"5162-5179"},"PeriodicalIF":2.9000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical optics express","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1364/boe.531828","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Cone beam X-ray luminescence computed tomography (CB-XLCT) is an emerging imaging technique with potential for early 3D tumor detection. However, the reconstruction challenge due to low light absorption and high scattering in tissues makes it a difficult inverse problem. In this study, the online dictionary learning (ODL) method, combined with iterative reduction FISTA (IR-FISTA), has been utilized to achieve high-quality reconstruction. Our method integrates IR-FISTA for efficient and accurate sparse coding, followed by an online stochastic approximation for dictionary updates, effectively capturing the sparse features inherent to the problem. Additionally, a re-sparse step is introduced to enhance the sparsity of the solution, making it better suited for CB-XLCT reconstruction. Numerical simulations and in vivo experiments were conducted to assess the performance of the method. The SODL-IR-FISTA achieved the smallest location error of 0.325 mm in in vivo experiments, which is 58% and 45% of the IVTCG-L 1 (0.562 mm) and OMP-L 0 (0.721 mm), respectively. Additionally, it has the highest DICE similarity coefficient, which is 0.748. The results demonstrate that our approach outperforms traditional methods in terms of localization precision, shape restoration, robustness, and practicality in live subjects.
期刊介绍:
The journal''s scope encompasses fundamental research, technology development, biomedical studies and clinical applications. BOEx focuses on the leading edge topics in the field, including:
Tissue optics and spectroscopy
Novel microscopies
Optical coherence tomography
Diffuse and fluorescence tomography
Photoacoustic and multimodal imaging
Molecular imaging and therapies
Nanophotonic biosensing
Optical biophysics/photobiology
Microfluidic optical devices
Vision research.