{"title":"HaploSweep: detecting and distinguishing recent soft and hard selective sweeps through haplotype structure","authors":"Shilei Zhao, Lianjiang Chi, Mincong Fu, Hua Chen","doi":"10.1093/molbev/msae192","DOIUrl":null,"url":null,"abstract":"Identifying soft selective sweeps using genomic data is a challenging yet crucial task in population genetics. In this study, we present HaploSweep, a novel method for detecting and categorizing soft and hard selective sweeps based on haplotype structure. Through simulations spanning a broad range of selection intensities, softness levels, and demographic histories, we demonstrate that HaploSweep outperforms iHS, nSL, and H12 in detecting soft sweeps. HaploSweep achieves high classification accuracy—0.9247 for CHB, 0.9484 for CEU, and 0.9829 YRI—when applied to simulations in line with the human Out-of-Africa demographic model. We also observe that the classification accuracy remains consistently robust across different demographic models. Additionally, we introduce a refined method to accurately distinguish soft shoulders adjacent to hard sweeps from soft sweeps. Application of HaploSweep to genomic data of CHB, CEU, and YRI populations from the 1000 genomes project has led to the discovery of several new genes that bear strong evidence of population-specific soft sweeps (HRNR, AMBRA1, BFA2T2, DYNC2H1, and RANBP2 etc), with prevalent associations to immune functions and metabolic processes. The validated performance of HaploSweep, demonstrated through both simulated and real data, underscores its potential as a valuable tool for detecting and comprehending the role of soft sweeps in adaptive evolution.","PeriodicalId":18730,"journal":{"name":"Molecular biology and evolution","volume":"33 1","pages":""},"PeriodicalIF":11.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular biology and evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/molbev/msae192","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Identifying soft selective sweeps using genomic data is a challenging yet crucial task in population genetics. In this study, we present HaploSweep, a novel method for detecting and categorizing soft and hard selective sweeps based on haplotype structure. Through simulations spanning a broad range of selection intensities, softness levels, and demographic histories, we demonstrate that HaploSweep outperforms iHS, nSL, and H12 in detecting soft sweeps. HaploSweep achieves high classification accuracy—0.9247 for CHB, 0.9484 for CEU, and 0.9829 YRI—when applied to simulations in line with the human Out-of-Africa demographic model. We also observe that the classification accuracy remains consistently robust across different demographic models. Additionally, we introduce a refined method to accurately distinguish soft shoulders adjacent to hard sweeps from soft sweeps. Application of HaploSweep to genomic data of CHB, CEU, and YRI populations from the 1000 genomes project has led to the discovery of several new genes that bear strong evidence of population-specific soft sweeps (HRNR, AMBRA1, BFA2T2, DYNC2H1, and RANBP2 etc), with prevalent associations to immune functions and metabolic processes. The validated performance of HaploSweep, demonstrated through both simulated and real data, underscores its potential as a valuable tool for detecting and comprehending the role of soft sweeps in adaptive evolution.
期刊介绍:
Molecular Biology and Evolution
Journal Overview:
Publishes research at the interface of molecular (including genomics) and evolutionary biology
Considers manuscripts containing patterns, processes, and predictions at all levels of organization: population, taxonomic, functional, and phenotypic
Interested in fundamental discoveries, new and improved methods, resources, technologies, and theories advancing evolutionary research
Publishes balanced reviews of recent developments in genome evolution and forward-looking perspectives suggesting future directions in molecular evolution applications.