Krylov Expressivity in Quantum Reservoir Computing and Quantum Extreme Learning

Saud Čindrak, Lina Jaurigue, Kathy Lüdge
{"title":"Krylov Expressivity in Quantum Reservoir Computing and Quantum Extreme Learning","authors":"Saud Čindrak, Lina Jaurigue, Kathy Lüdge","doi":"arxiv-2409.12079","DOIUrl":null,"url":null,"abstract":"Quantum machine learning utilizes the high-dimensional space of quantum\nsystems, attracting significant research interest. This study employs Krylov\ncomplexity to analyze task performance in quantum machine learning. We\ncalculate the spread complexity and effective dimension of the Krylov space,\nintroducing the effective dimension as an easy-to-compute, measurable, and\nupper-bounded expressivity measure. Our analysis covers quantum reservoir\ncomputers and quantum extreme learning machines, showing that increasing\neffective dimension correlates with improved performance. We validate this with\nthe Lorenz cross-prediction task, observing reduced error with higher effective\ndimensions. Lastly, we compare the spread complexity, the effective dimension,\nand the fidelity as expressivity measures and show that fidelity is not\nsuitable, while spread complexity can qualitatively explain task performance.\nOnly the effective dimension captures the phase space accurately and exhibits\nthe same saturation as task performance for similar evolution times.","PeriodicalId":501226,"journal":{"name":"arXiv - PHYS - Quantum Physics","volume":"53 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Quantum Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.12079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum machine learning utilizes the high-dimensional space of quantum systems, attracting significant research interest. This study employs Krylov complexity to analyze task performance in quantum machine learning. We calculate the spread complexity and effective dimension of the Krylov space, introducing the effective dimension as an easy-to-compute, measurable, and upper-bounded expressivity measure. Our analysis covers quantum reservoir computers and quantum extreme learning machines, showing that increasing effective dimension correlates with improved performance. We validate this with the Lorenz cross-prediction task, observing reduced error with higher effective dimensions. Lastly, we compare the spread complexity, the effective dimension, and the fidelity as expressivity measures and show that fidelity is not suitable, while spread complexity can qualitatively explain task performance. Only the effective dimension captures the phase space accurately and exhibits the same saturation as task performance for similar evolution times.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
量子存储计算和量子极限学习中的克雷洛夫表达式
量子机器学习利用量子系统的高维空间,吸引了大量研究兴趣。本研究利用克雷洛夫复杂性分析量子机器学习中的任务性能。我们计算了克雷洛夫空间的扩散复杂度和有效维度,并引入有效维度作为一种易于计算、可测量和上界表达度量。我们的分析涵盖了量子储备计算机和量子极端学习机,表明有效维度的增加与性能的提高相关。我们用洛伦兹交叉预测任务验证了这一点,发现有效维度越高,错误越少。最后,我们比较了作为表达度量的扩展复杂度、有效维度和保真度,结果表明保真度并不合适,而扩展复杂度可以定性地解释任务性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Performance advantage of protective quantum measurements Mechanical Wannier-Stark Ladder of Diamond Spin-Mechanical Lamb Wave Resonators Towards practical secure delegated quantum computing with semi-classical light Quantum-like nonlinear interferometry with frequency-engineered classical light QUBO-based SVM for credit card fraud detection on a real QPU
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1