Quasiperiodic Floquet-Gibbs states in Rydberg atomic systems

Wilson S. Martins, Federico Carollo, Kay Brandner, Igor Lesanovsky
{"title":"Quasiperiodic Floquet-Gibbs states in Rydberg atomic systems","authors":"Wilson S. Martins, Federico Carollo, Kay Brandner, Igor Lesanovsky","doi":"arxiv-2409.12044","DOIUrl":null,"url":null,"abstract":"Open systems that are weakly coupled to a thermal environment and driven by\nfast, periodically oscillating fields are commonly assumed to approach an\nequilibrium-like steady state with respect to a truncated Floquet-Magnus\nHamiltonian. Using a general argument based on Fermi's golden rule, we show\nthat such Floquet-Gibbs states emerge naturally in periodically modulated\nRydberg atomic systems, whose lab-frame Hamiltonian is a quasiperiodic function\nof time. Our approach applies as long as the inherent Bohr frequencies of the\nsystem, the modulation frequency and the frequency of the driving laser, which\nis necessary to uphold high-lying Rydberg excitations, are well separated. To\ncorroborate our analytical results, we analyze a realistic model of up to five\ninteracting Rydberg atoms with periodically changing detuning. We demonstrate\nnumerically that the second-order Floquet-Gibbs state of this system is\nessentially indistinguishable from the steady state of the corresponding\nRedfield equation if the modulation and driving frequencies are sufficiently\nlarge.","PeriodicalId":501226,"journal":{"name":"arXiv - PHYS - Quantum Physics","volume":"64 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Quantum Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.12044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Open systems that are weakly coupled to a thermal environment and driven by fast, periodically oscillating fields are commonly assumed to approach an equilibrium-like steady state with respect to a truncated Floquet-Magnus Hamiltonian. Using a general argument based on Fermi's golden rule, we show that such Floquet-Gibbs states emerge naturally in periodically modulated Rydberg atomic systems, whose lab-frame Hamiltonian is a quasiperiodic function of time. Our approach applies as long as the inherent Bohr frequencies of the system, the modulation frequency and the frequency of the driving laser, which is necessary to uphold high-lying Rydberg excitations, are well separated. To corroborate our analytical results, we analyze a realistic model of up to five interacting Rydberg atoms with periodically changing detuning. We demonstrate numerically that the second-order Floquet-Gibbs state of this system is essentially indistinguishable from the steady state of the corresponding Redfield equation if the modulation and driving frequencies are sufficiently large.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
雷德贝格原子系统中的准周期弗洛克-吉布斯态
人们通常假定,与热环境弱耦合并由快速周期振荡场驱动的开放系统会在截断的弗洛克特-马格努斯-哈密顿方面接近类似于平衡的稳态。利用基于费米黄金定律的一般性论证,我们证明了这种 Floquet-Gibbs 状态会在周期性调制的雷德贝格原子系统中自然出现,其实验室框架哈密顿是时间的准周期函数。只要系统的固有玻尔频率、调制频率和驱动激光的频率(维持高电平的雷德贝格激发所必需的)完全分离,我们的方法就适用。为了证实我们的分析结果,我们分析了多达五个相互作用的雷德贝格原子与周期性变化的失谐的现实模型。我们用数字证明,如果调制频率和驱动频率足够大,该系统的二阶 Floquet-Gibbs 状态与相应雷德菲尔德方程的稳定状态基本上没有区别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Performance advantage of protective quantum measurements Mechanical Wannier-Stark Ladder of Diamond Spin-Mechanical Lamb Wave Resonators Towards practical secure delegated quantum computing with semi-classical light Quantum-like nonlinear interferometry with frequency-engineered classical light QUBO-based SVM for credit card fraud detection on a real QPU
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1