Olivier Spitz;Luis E. Maldonado-Castillo;Mark A. Berrill;Yehuda Braiman
{"title":"Optimization of Combined Coherent Gain-Switch Pulsing in a Large Array of Semiconductor Lasers","authors":"Olivier Spitz;Luis E. Maldonado-Castillo;Mark A. Berrill;Yehuda Braiman","doi":"10.1109/JSTQE.2024.3460738","DOIUrl":null,"url":null,"abstract":"We combine gain switching and external optical feedback to achieve high-power coherent pulsing in a large array of semiconductor lasers. The simulations are performed in the framework of the Lang-Kobayashi model with modulation of the electrical bias. Long-range coupling in the network of emitters and precise tuning of the modulation frequency are key parameters to obtain both phase-locking between the emitters, and reproducible, periodic, high intensity bursts, i.e. robust, coherent pulsing. The configuration we present here relies on non-filtered conventional optical feedback and allows achieving phase-locked pulsing across the array, including at modulation frequencies that are resonant and not resonant with the external cavity frequency and its harmonics. This work impacts on the realization of phase-synchronized pulsed sources from semiconductor laser arrays and provides insight for the generation of complex nonlinear dynamics in large networks of oscillators.","PeriodicalId":13094,"journal":{"name":"IEEE Journal of Selected Topics in Quantum Electronics","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Quantum Electronics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10680185/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
We combine gain switching and external optical feedback to achieve high-power coherent pulsing in a large array of semiconductor lasers. The simulations are performed in the framework of the Lang-Kobayashi model with modulation of the electrical bias. Long-range coupling in the network of emitters and precise tuning of the modulation frequency are key parameters to obtain both phase-locking between the emitters, and reproducible, periodic, high intensity bursts, i.e. robust, coherent pulsing. The configuration we present here relies on non-filtered conventional optical feedback and allows achieving phase-locked pulsing across the array, including at modulation frequencies that are resonant and not resonant with the external cavity frequency and its harmonics. This work impacts on the realization of phase-synchronized pulsed sources from semiconductor laser arrays and provides insight for the generation of complex nonlinear dynamics in large networks of oscillators.
期刊介绍:
Papers published in the IEEE Journal of Selected Topics in Quantum Electronics fall within the broad field of science and technology of quantum electronics of a device, subsystem, or system-oriented nature. Each issue is devoted to a specific topic within this broad spectrum. Announcements of the topical areas planned for future issues, along with deadlines for receipt of manuscripts, are published in this Journal and in the IEEE Journal of Quantum Electronics. Generally, the scope of manuscripts appropriate to this Journal is the same as that for the IEEE Journal of Quantum Electronics. Manuscripts are published that report original theoretical and/or experimental research results that advance the scientific and technological base of quantum electronics devices, systems, or applications. The Journal is dedicated toward publishing research results that advance the state of the art or add to the understanding of the generation, amplification, modulation, detection, waveguiding, or propagation characteristics of coherent electromagnetic radiation having sub-millimeter and shorter wavelengths. In order to be suitable for publication in this Journal, the content of manuscripts concerned with subject-related research must have a potential impact on advancing the technological base of quantum electronic devices, systems, and/or applications. Potential authors of subject-related research have the responsibility of pointing out this potential impact. System-oriented manuscripts must be concerned with systems that perform a function previously unavailable or that outperform previously established systems that did not use quantum electronic components or concepts. Tutorial and review papers are by invitation only.