miRNA-mediated control of gephyrin synthesis drives sustained inhibitory synaptic plasticity.

IF 6.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY EMBO Reports Pub Date : 2024-09-18 DOI:10.1038/s44319-024-00253-z
Theresa M Welle,Dipen Rajgor,Dean J Kareemo,Joshua D Garcia,Sarah M Zych,Sarah E Wolfe,Sara E Gookin,Tyler P Martinez,Mark L Dell'Acqua,Christopher P Ford,Matthew J Kennedy,Katharine R Smith
{"title":"miRNA-mediated control of gephyrin synthesis drives sustained inhibitory synaptic plasticity.","authors":"Theresa M Welle,Dipen Rajgor,Dean J Kareemo,Joshua D Garcia,Sarah M Zych,Sarah E Wolfe,Sara E Gookin,Tyler P Martinez,Mark L Dell'Acqua,Christopher P Ford,Matthew J Kennedy,Katharine R Smith","doi":"10.1038/s44319-024-00253-z","DOIUrl":null,"url":null,"abstract":"Activity-dependent protein synthesis is crucial for long-lasting forms of synaptic plasticity. However, our understanding of translational mechanisms controlling GABAergic synapses is limited. One distinct form of inhibitory long-term potentiation (iLTP) enhances postsynaptic clusters of GABAARs and the primary inhibitory scaffold, gephyrin, to promote sustained synaptic strengthening. While we previously found that persistent iLTP requires mRNA translation, the mechanisms controlling plasticity-induced gephyrin translation remain unknown. We identify miR153 as a novel regulator of Gphn mRNA translation which controls gephyrin protein levels and synaptic clustering, ultimately impacting inhibitory synaptic structure and function. iLTP induction downregulates miR153, reversing its translational suppression of Gphn mRNA and promoting de novo gephyrin protein synthesis and synaptic clustering during iLTP. Finally, we find that reduced miR153 expression during iLTP is driven by an excitation-transcription coupling pathway involving calcineurin, NFAT and HDACs, which also controls the miRNA-dependent upregulation of GABAARs. Together, we delineate a miRNA-dependent post-transcriptional mechanism that controls the expression of the key synaptic scaffold, gephyrin, and may converge with parallel miRNA pathways to coordinate gene upregulation to maintain inhibitory synaptic plasticity.","PeriodicalId":11541,"journal":{"name":"EMBO Reports","volume":"38 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44319-024-00253-z","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Activity-dependent protein synthesis is crucial for long-lasting forms of synaptic plasticity. However, our understanding of translational mechanisms controlling GABAergic synapses is limited. One distinct form of inhibitory long-term potentiation (iLTP) enhances postsynaptic clusters of GABAARs and the primary inhibitory scaffold, gephyrin, to promote sustained synaptic strengthening. While we previously found that persistent iLTP requires mRNA translation, the mechanisms controlling plasticity-induced gephyrin translation remain unknown. We identify miR153 as a novel regulator of Gphn mRNA translation which controls gephyrin protein levels and synaptic clustering, ultimately impacting inhibitory synaptic structure and function. iLTP induction downregulates miR153, reversing its translational suppression of Gphn mRNA and promoting de novo gephyrin protein synthesis and synaptic clustering during iLTP. Finally, we find that reduced miR153 expression during iLTP is driven by an excitation-transcription coupling pathway involving calcineurin, NFAT and HDACs, which also controls the miRNA-dependent upregulation of GABAARs. Together, we delineate a miRNA-dependent post-transcriptional mechanism that controls the expression of the key synaptic scaffold, gephyrin, and may converge with parallel miRNA pathways to coordinate gene upregulation to maintain inhibitory synaptic plasticity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
miRNA 介导的 gephyrin 合成控制驱动持续的抑制性突触可塑性。
依赖活动的蛋白质合成对于突触可塑性的持久形式至关重要。然而,我们对控制 GABA 能突触的翻译机制了解有限。一种独特形式的抑制性长期电位(iLTP)可增强突触后的 GABAARs 簇和主要抑制性支架 gephyrin,从而促进持续的突触强化。虽然我们以前发现持续的 iLTP 需要 mRNA 翻译,但控制可塑性诱导的 gephyrin 翻译的机制仍然未知。我们发现 miR153 是 Gphn mRNA 翻译的新型调控因子,它控制着 gephyrin 蛋白水平和突触集群,最终影响抑制性突触的结构和功能。iLTP 诱导下调 miR153,逆转其对 Gphn mRNA 翻译的抑制,促进 iLTP 期间 gephyrin 蛋白的新合成和突触集群。最后,我们发现 iLTP 期间 miR153 表达的减少是由涉及钙神经蛋白、NFAT 和 HDAC 的兴奋-转录耦合途径驱动的,该途径也控制着依赖 miRNA 的 GABAARs 上调。综上所述,我们勾勒出了一种依赖于 miRNA 的转录后机制,该机制控制着关键突触支架 gephyrin 的表达,并可能与平行的 miRNA 通路汇聚在一起,协调基因上调以维持抑制性突触可塑性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
EMBO Reports
EMBO Reports 生物-生化与分子生物学
CiteScore
11.20
自引率
1.30%
发文量
267
审稿时长
1 months
期刊介绍: EMBO Reports is a scientific journal that specializes in publishing research articles in the fields of molecular biology, cell biology, and developmental biology. The journal is known for its commitment to publishing high-quality, impactful research that provides novel physiological and functional insights. These insights are expected to be supported by robust evidence, with independent lines of inquiry validating the findings. The journal's scope includes both long and short-format papers, catering to different types of research contributions. It values studies that: Communicate major findings: Articles that report significant discoveries or advancements in the understanding of biological processes at the molecular, cellular, and developmental levels. Confirm important findings: Research that validates or supports existing knowledge in the field, reinforcing the reliability of previous studies. Refute prominent claims: Studies that challenge or disprove widely accepted ideas or hypotheses in the biosciences, contributing to the correction and evolution of scientific understanding. Present null data: Papers that report negative results or findings that do not support a particular hypothesis, which are crucial for the scientific process as they help to refine or redirect research efforts. EMBO Reports is dedicated to maintaining high standards of scientific rigor and integrity, ensuring that the research it publishes contributes meaningfully to the advancement of knowledge in the life sciences. By covering a broad spectrum of topics and encouraging the publication of both positive and negative results, the journal plays a vital role in promoting a comprehensive and balanced view of scientific inquiry. 
期刊最新文献
BBSome-deficient cells activate intraciliary CDC42 to trigger actin-dependent ciliary ectocytosis. Can bacteria think? Gpr54 deletion accelerates hair cycle and hair regeneration. Interleukin-2-mediated NF-κB-dependent mRNA splicing modulates interferon gamma protein production. The DNA demethylase TET1 modifies the impact of maternal folic acid status on embryonic brain development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1