首页 > 最新文献

EMBO Reports最新文献

英文 中文
Peer replication : A new tier of science built on reproducibility. 对等复制:建立在可重复性基础上的一个新的科学层次。
IF 6.2 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2026-02-09 DOI: 10.1038/s44319-026-00705-8
Samuel J Lord, Arthur Charles-Orszag, Kristen Skruber, R Dyche Mullins, Anders Rehfeld
{"title":"Peer replication : A new tier of science built on reproducibility.","authors":"Samuel J Lord, Arthur Charles-Orszag, Kristen Skruber, R Dyche Mullins, Anders Rehfeld","doi":"10.1038/s44319-026-00705-8","DOIUrl":"https://doi.org/10.1038/s44319-026-00705-8","url":null,"abstract":"","PeriodicalId":11541,"journal":{"name":"EMBO Reports","volume":" ","pages":""},"PeriodicalIF":6.2,"publicationDate":"2026-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146149389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Oligomerization-dependent and synergistic regulation of Cdc42 GTPase cycling by a GEF and a GAP. GEF和GAP对Cdc42 GTPase循环的寡聚化依赖性和协同调节。
IF 6.2 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2026-02-09 DOI: 10.1038/s44319-026-00695-7
Sophie Tschirpke, Werner K-G Daalman, Frank van Opstal, Liedewij Laan

Cell polarity is a crucial biological process essential for cell division, directed growth, and motility. In Saccharomyces cerevisiae, polarity establishment centers around the small Rho-type GTPase Cdc42, which cycles between GTP-bound and GDP-bound states, regulated by GEFs like Cdc24 and GAPs such as Rga2. To dissect the dynamic regulation of Cdc42, we employed in vitro GTPase assays, revealing inverse concentration-dependent profiles for Cdc24 and Rga2: with increasing concentration, Cdc24's GEF activity is nonlinear and oligomerization-dependent, which is possibly linked to the relief of its self-inhibition. In contrast, Rga2's GAP activity saturates, likely due to self-inhibition upon oligomerization. Together, Cdc24 and Rga2 exhibit a strong synergy driven by weak Cdc24-Rga2 binding. We propose that the synergy stems from Cdc24 alleviating the self-inhibition of oligomeric Rga2. We believe this synergy contributes to efficient regulation of Cdc42's GTPase cycle over a wide range of cycling rates, enabling cells to resourcefully establish polarity. As Cdc42 is highly conserved among eukaryotes, we propose the GEF-GAP synergy to be a general regulatory property in other eukaryotes.

细胞极性是细胞分裂、定向生长和运动的重要生物学过程。在酿酒酵母中,极性建立以小的rho型GTPase Cdc42为中心,该酶在gtp结合和gdp结合状态之间循环,由Cdc24等gef和Rga2等gap调节。为了剖析Cdc42的动态调控,我们采用了体外GTPase实验,揭示了Cdc24和Rga2的反向浓度依赖性:随着浓度的增加,Cdc24的GEF活性呈非线性和寡聚化依赖性,这可能与其自我抑制的解除有关。相反,Rga2的GAP活性饱和,可能是由于寡聚化时的自我抑制。在Cdc24-Rga2弱结合的驱动下,Cdc24和Rga2表现出很强的协同作用。我们认为这种协同作用源于Cdc24减轻了低聚物Rga2的自我抑制。我们相信这种协同作用有助于Cdc42的GTPase循环在广泛的循环速率范围内有效调节,使细胞能够灵活地建立极性。由于Cdc42在真核生物中高度保守,我们认为GEF-GAP协同作用可能是其他真核生物的普遍调控特性。
{"title":"Oligomerization-dependent and synergistic regulation of Cdc42 GTPase cycling by a GEF and a GAP.","authors":"Sophie Tschirpke, Werner K-G Daalman, Frank van Opstal, Liedewij Laan","doi":"10.1038/s44319-026-00695-7","DOIUrl":"https://doi.org/10.1038/s44319-026-00695-7","url":null,"abstract":"<p><p>Cell polarity is a crucial biological process essential for cell division, directed growth, and motility. In Saccharomyces cerevisiae, polarity establishment centers around the small Rho-type GTPase Cdc42, which cycles between GTP-bound and GDP-bound states, regulated by GEFs like Cdc24 and GAPs such as Rga2. To dissect the dynamic regulation of Cdc42, we employed in vitro GTPase assays, revealing inverse concentration-dependent profiles for Cdc24 and Rga2: with increasing concentration, Cdc24's GEF activity is nonlinear and oligomerization-dependent, which is possibly linked to the relief of its self-inhibition. In contrast, Rga2's GAP activity saturates, likely due to self-inhibition upon oligomerization. Together, Cdc24 and Rga2 exhibit a strong synergy driven by weak Cdc24-Rga2 binding. We propose that the synergy stems from Cdc24 alleviating the self-inhibition of oligomeric Rga2. We believe this synergy contributes to efficient regulation of Cdc42's GTPase cycle over a wide range of cycling rates, enabling cells to resourcefully establish polarity. As Cdc42 is highly conserved among eukaryotes, we propose the GEF-GAP synergy to be a general regulatory property in other eukaryotes.</p>","PeriodicalId":11541,"journal":{"name":"EMBO Reports","volume":" ","pages":""},"PeriodicalIF":6.2,"publicationDate":"2026-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146149393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Human CRAMP1 specifically promotes the expression of histone H1 genes. 人类CRAMP1特异性地促进组蛋白H1基因的表达。
IF 6.2 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2026-02-09 DOI: 10.1038/s44319-026-00704-9
Justin Bodner, Pranathi Vadlamani, Alexander S Lee, Kathryn A Helmin, Qianli Liu, Almira E Pratasenia, Maria M A Horst, Sudharsana Ravisankar, Sakshi Khurana, Marc L Mendillo, Benjamin D Singer, Shashank Srivastava, Daniel R Foltz

Proper histone gene expression is critical for cell viability and maintenance of genomic integrity. Multiple histone genes are organized into three genomic loci that encode replication-coupled core and linker histones. Histone gene expression and transcript processing are orchestrated in the histone locus body (HLB) within the nucleus. Here, we identify human CRAMP1 as a selective regulator of the linker histone H1 expression. Human CRAMP1 is recruited to the HLB in RPE1hTERT cells. Immunoprecipitation combined with mass spectrometry shows CRAMP1 physically associates with the HLB component GON4L (also known as YARP). We demonstrate that the PAH domains of GON4L interact with CRAMP1. CRAMP1 disruption results in reduced histone H1 mRNA expression and histone H1 protein levels, with no significant changes in core histone gene expression. CRAMP1 occupies the promoters of actively expressed replication-coupled linker histone genes that reside within the histone locus body and replication-independent histone H1 loci, which reside in a region of the genome without other histone genes. Together, these data identify CRAMP1 as a novel and selective regulator of histone H1 gene expression.

适当的组蛋白基因表达对细胞活力和基因组完整性的维持至关重要。多个组蛋白基因被组织成三个基因组位点,编码复制偶联核心组蛋白和连接组蛋白。组蛋白基因的表达和转录加工在细胞核内的组蛋白位点体(HLB)中进行。在这里,我们发现人类CRAMP1是连接蛋白H1表达的选择性调节剂。人CRAMP1在RPE1hTERT细胞中被募集到HLB。免疫沉淀结合质谱分析显示,CRAMP1与HLB成分GON4L(也称为YARP)存在物理关联。我们证明了GON4L的PAH结构域与CRAMP1相互作用。CRAMP1破坏导致组蛋白H1 mRNA表达和组蛋白H1蛋白水平降低,核心组蛋白基因表达无明显变化。CRAMP1占据了位于组蛋白座体内的主动表达的复制偶联连接组蛋白基因的启动子,以及位于基因组中没有其他组蛋白基因的复制无关组蛋白H1位点的启动子。总之,这些数据确定了CRAMP1是组蛋白H1基因表达的一种新的选择性调节因子。
{"title":"Human CRAMP1 specifically promotes the expression of histone H1 genes.","authors":"Justin Bodner, Pranathi Vadlamani, Alexander S Lee, Kathryn A Helmin, Qianli Liu, Almira E Pratasenia, Maria M A Horst, Sudharsana Ravisankar, Sakshi Khurana, Marc L Mendillo, Benjamin D Singer, Shashank Srivastava, Daniel R Foltz","doi":"10.1038/s44319-026-00704-9","DOIUrl":"https://doi.org/10.1038/s44319-026-00704-9","url":null,"abstract":"<p><p>Proper histone gene expression is critical for cell viability and maintenance of genomic integrity. Multiple histone genes are organized into three genomic loci that encode replication-coupled core and linker histones. Histone gene expression and transcript processing are orchestrated in the histone locus body (HLB) within the nucleus. Here, we identify human CRAMP1 as a selective regulator of the linker histone H1 expression. Human CRAMP1 is recruited to the HLB in RPE1<sup>hTERT</sup> cells. Immunoprecipitation combined with mass spectrometry shows CRAMP1 physically associates with the HLB component GON4L (also known as YARP). We demonstrate that the PAH domains of GON4L interact with CRAMP1. CRAMP1 disruption results in reduced histone H1 mRNA expression and histone H1 protein levels, with no significant changes in core histone gene expression. CRAMP1 occupies the promoters of actively expressed replication-coupled linker histone genes that reside within the histone locus body and replication-independent histone H1 loci, which reside in a region of the genome without other histone genes. Together, these data identify CRAMP1 as a novel and selective regulator of histone H1 gene expression.</p>","PeriodicalId":11541,"journal":{"name":"EMBO Reports","volume":" ","pages":""},"PeriodicalIF":6.2,"publicationDate":"2026-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146149359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wdr4 regulates ribosome biogenesis and intestinal homeostasis via let-7. Wdr4通过let-7调控核糖体生物发生和肠道内稳态。
IF 6.2 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2026-02-09 DOI: 10.1038/s44319-026-00701-y
Kreeti Kajal, Elham Rastegari, Wen-Der Wang, Jian-Chiuan Li, Chun-Hong Chen, Wan Hsuan Chou, Wei Chiao Chang, Tzu-Yang Lin, Kevin Tsai, Tsai Ming Lu, Kartik Venkatachalam, Hwei-Jan Hsu

Proper regulation of ribosome biogenesis is essential for stem cell function and tissue homeostasis, yet its upstream control in adult intestinal stem cells (ISCs) remains unclear. Here, we identify the WD repeat protein Wdr4 as a key regulator of ISC homeostasis in the Drosophila midgut. Wdr4 cooperates with the methyltransferase Mettl1 to catalyze N⁷-methylguanosine (m⁷G) modification of let-7 miRNA. Wdr4 or Mettl1 depletion disrupts this modification, reducing let-7 levels and aberrantly activating TOR-JNK-dMyc signaling. This drives elevated ribosome biogenesis, ISC overproliferation, misdifferentiation, and intestinal dysplasia. Overexpression of let-7, inhibition of TOR, or suppression of JNK rescues these defects. Importantly, expression of human WDR4 and METTL1, but not catalytic-dead METTL1 mutant, restores ISC homeostasis in Wdr4- and Mettl1-depleted flies, establishing a conserved Wdr4/Mettl1-let-7-TOR-JNK axis that links miRNA modification to translational control and tissue integrity. Together, our findings uncover a previously unrecognized function of miRNA m⁷G methylation in regulating ribosome biogenesis and maintaining intestinal homeostasis.

核糖体生物发生的适当调控对干细胞功能和组织稳态至关重要,但其在成体肠道干细胞(ISCs)中的上游调控尚不清楚。在这里,我们发现WD重复蛋白Wdr4是果蝇中肠ISC稳态的关键调节因子。Wdr4与甲基转移酶Mettl1合作催化let-7 miRNA的N⁷-甲基鸟苷(m⁷G)修饰。Wdr4或Mettl1缺失会破坏这种修饰,降低let-7水平并异常激活TOR-JNK-dMyc信号。这导致核糖体生物发生升高,ISC过度增殖,错误分化和肠道发育不良。过表达let-7、抑制TOR或抑制JNK可挽救这些缺陷。重要的是,表达人类WDR4和METTL1,而不是催化死亡的METTL1突变体,可以恢复WDR4 -和METTL1缺失果蝇的ISC稳态,建立一个保守的WDR4 / METTL1 -let-7- tor - jnk轴,将miRNA修饰与翻译控制和组织完整性联系起来。总之,我们的研究结果揭示了miRNA m⁷G甲基化在调节核糖体生物发生和维持肠道稳态中的先前未被认识的功能。
{"title":"Wdr4 regulates ribosome biogenesis and intestinal homeostasis via let-7.","authors":"Kreeti Kajal, Elham Rastegari, Wen-Der Wang, Jian-Chiuan Li, Chun-Hong Chen, Wan Hsuan Chou, Wei Chiao Chang, Tzu-Yang Lin, Kevin Tsai, Tsai Ming Lu, Kartik Venkatachalam, Hwei-Jan Hsu","doi":"10.1038/s44319-026-00701-y","DOIUrl":"https://doi.org/10.1038/s44319-026-00701-y","url":null,"abstract":"<p><p>Proper regulation of ribosome biogenesis is essential for stem cell function and tissue homeostasis, yet its upstream control in adult intestinal stem cells (ISCs) remains unclear. Here, we identify the WD repeat protein Wdr4 as a key regulator of ISC homeostasis in the Drosophila midgut. Wdr4 cooperates with the methyltransferase Mettl1 to catalyze N⁷-methylguanosine (m⁷G) modification of let-7 miRNA. Wdr4 or Mettl1 depletion disrupts this modification, reducing let-7 levels and aberrantly activating TOR-JNK-dMyc signaling. This drives elevated ribosome biogenesis, ISC overproliferation, misdifferentiation, and intestinal dysplasia. Overexpression of let-7, inhibition of TOR, or suppression of JNK rescues these defects. Importantly, expression of human WDR4 and METTL1, but not catalytic-dead METTL1 mutant, restores ISC homeostasis in Wdr4- and Mettl1-depleted flies, establishing a conserved Wdr4/Mettl1-let-7-TOR-JNK axis that links miRNA modification to translational control and tissue integrity. Together, our findings uncover a previously unrecognized function of miRNA m⁷G methylation in regulating ribosome biogenesis and maintaining intestinal homeostasis.</p>","PeriodicalId":11541,"journal":{"name":"EMBO Reports","volume":" ","pages":""},"PeriodicalIF":6.2,"publicationDate":"2026-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146149364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Somatic gene repression ensures physical segregation of germline and soma in Drosophila embryos. 在果蝇胚胎中,体细胞基因抑制保证了种系和体细胞的物理分离。
IF 6.2 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2026-02-09 DOI: 10.1038/s44319-026-00710-x
Miho Asaoka, Mizuki Kayama, Tomoki Kawagoe, Makoto Hayashi, Shumpei Morita, Satoru Kobayashi

In many animals, primordial germ cells are transiently segregated outside the somatic-cell cluster that forms the embryo's body during early embryogenesis. This physical segregation of the germline from the soma has long been believed to be crucial for germline development, but the mechanisms controlling this segregation and its developmental significance remain unclear. Here, in Drosophila, we show that somatic gene silencing in the germline is essential for maintaining this segregation. Primordial germ cells (pole cells) lacking the Nanos- and Polar granule component (Pgc)-dependent dual repression mechanism misexpress widespread somatic genes. They form abnormal cellular protrusions, invade adjacent somatic epithelium, and intermingle with somatic cells. These mislocalized pole cells ultimately undergo cell death, whereas properly segregated cells survive. Notably, knockdown of miranda (mira), one of the somatic genes ectopically expressed, rescues these phenotypes. Our findings uncover a previously unrecognized mechanism whereby somatic gene silencing safeguards the physical boundary between the germline and the somatic cells forming the embryo's body, highlighting its potential role in ensuring germline viability during early development.

在许多动物中,在胚胎发生早期,原始生殖细胞在形成胚胎体的体细胞簇外短暂分离。长期以来,人们一直认为生殖细胞与体细胞的物理分离对生殖细胞的发育至关重要,但控制这种分离的机制及其发育意义尚不清楚。在果蝇中,我们发现生殖系中的体细胞基因沉默对于维持这种分离至关重要。缺乏纳米和极粒组分(Pgc)依赖的双重抑制机制的原始生殖细胞(极细胞)错误表达广泛存在的体细胞基因。它们形成异常的细胞突起,侵入邻近的体细胞上皮,并与体细胞混合。这些定位错误的极细胞最终会死亡,而正确分离的细胞则会存活。值得注意的是,米兰达(mira)的敲低,一个体细胞基因的异位表达,拯救这些表型。我们的发现揭示了一种以前未被认识到的机制,即体细胞基因沉默保护了胚系和形成胚胎体的体细胞之间的物理边界,突出了其在早期发育中确保胚系活力的潜在作用。
{"title":"Somatic gene repression ensures physical segregation of germline and soma in Drosophila embryos.","authors":"Miho Asaoka, Mizuki Kayama, Tomoki Kawagoe, Makoto Hayashi, Shumpei Morita, Satoru Kobayashi","doi":"10.1038/s44319-026-00710-x","DOIUrl":"https://doi.org/10.1038/s44319-026-00710-x","url":null,"abstract":"<p><p>In many animals, primordial germ cells are transiently segregated outside the somatic-cell cluster that forms the embryo's body during early embryogenesis. This physical segregation of the germline from the soma has long been believed to be crucial for germline development, but the mechanisms controlling this segregation and its developmental significance remain unclear. Here, in Drosophila, we show that somatic gene silencing in the germline is essential for maintaining this segregation. Primordial germ cells (pole cells) lacking the Nanos- and Polar granule component (Pgc)-dependent dual repression mechanism misexpress widespread somatic genes. They form abnormal cellular protrusions, invade adjacent somatic epithelium, and intermingle with somatic cells. These mislocalized pole cells ultimately undergo cell death, whereas properly segregated cells survive. Notably, knockdown of miranda (mira), one of the somatic genes ectopically expressed, rescues these phenotypes. Our findings uncover a previously unrecognized mechanism whereby somatic gene silencing safeguards the physical boundary between the germline and the somatic cells forming the embryo's body, highlighting its potential role in ensuring germline viability during early development.</p>","PeriodicalId":11541,"journal":{"name":"EMBO Reports","volume":" ","pages":""},"PeriodicalIF":6.2,"publicationDate":"2026-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146149334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The sophist in the server : Rhetoric, Reasoning and Scientific Judgment in the Age of LLMs. 服务器中的诡辩家:法学硕士时代的修辞、推理与科学判断。
IF 6.2 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2026-02-06 DOI: 10.1038/s44319-026-00711-w
Maria T Colangelo, Carlo Galli
{"title":"The sophist in the server : Rhetoric, Reasoning and Scientific Judgment in the Age of LLMs.","authors":"Maria T Colangelo, Carlo Galli","doi":"10.1038/s44319-026-00711-w","DOIUrl":"https://doi.org/10.1038/s44319-026-00711-w","url":null,"abstract":"","PeriodicalId":11541,"journal":{"name":"EMBO Reports","volume":" ","pages":""},"PeriodicalIF":6.2,"publicationDate":"2026-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146131079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
McIdas localizes to centrioles and controls centriole numbers through PLK4-dependent phosphorylation. McIdas定位于中心粒,并通过plk4依赖性磷酸化控制中心粒数量。
IF 6.2 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2026-02-05 DOI: 10.1038/s44319-026-00697-5
Marina Arbi, Margarita Skamnelou, Lydia Koufoudaki, Vasiliki Bakali, Spyridoula Bournaka, Sihem Zitouni, Stavroula Tsaridou, Ozge Karayel, Catherine G Vasilopoulou, Aikaterini C Tsika, Nikolaos N Giakoumakis, Ourania Preza, Georgios A Spyroulias, Matthias Mann, Mónica Bettencourt-Dias, Stavros Taraviras, Zoi Lygerou

The centriole duplication cycle must be tightly controlled and coordinated with the chromosome cycle. Aberrations in centriole biogenesis can cause developmental disorders, ciliopathies and cancer, yet the molecular determinants controlling centriole numbers and the link between the two cycles remain poorly characterized. Here, we demonstrate that McIdas, previously implicated in cell cycle regulation and multiciliogenesis, plays a critical role in maintaining proper centriole numbers. McIdas localizes to centrioles, where it exhibits dynamic localization throughout the cell cycle, dependent upon a nuclear export signal (NES) in its coiled-coil domain. Overexpression of McIdas induces centriole overduplication, whereas its depletion perturbs daughter centriole biogenesis and SAS6 recruitment. An NES mutant of McIdas that fails to localize to centrioles does not induce centriole amplification. Moreover, McIdas depletion reduces PLK4-induced centriole amplification. McIdas interacts with and is phosphorylated by PLK4, which is critical for its role in centriole number control. Overall, our results demonstrate that in addition to its known nuclear localization, McIdas also localizes to centrioles, affecting centriole duplication. This novel, direct role of McIdas in centriole duplication connects its functions in cell cycle regulation and multiciliogenesis.

中心粒复制周期必须与染色体周期紧密控制和协调。中心粒生物发生异常可导致发育障碍、纤毛病和癌症,但控制中心粒数量的分子决定因素以及这两个周期之间的联系仍不清楚。在这里,我们证明McIdas先前涉及细胞周期调节和多毛细胞形成,在维持适当的中心粒数量中起关键作用。McIdas定位于中心粒,它在整个细胞周期中表现出动态定位,依赖于其线圈域的核输出信号(NES)。McIdas的过表达诱导中心粒过度复制,而其缺失则扰乱子中心粒的生物发生和SAS6的募集。McIdas的NES突变体不能定位到中心粒,不能诱导中心粒扩增。此外,McIdas耗尽降低了plk4诱导的中心粒扩增。McIdas与PLK4相互作用并被PLK4磷酸化,这对其在中心粒数量控制中的作用至关重要。总的来说,我们的结果表明,除了已知的核定位,McIdas也定位于中心粒,影响中心粒复制。McIdas在中心粒复制中的这种新颖的直接作用将其在细胞周期调节和多毛细胞形成中的功能联系起来。
{"title":"McIdas localizes to centrioles and controls centriole numbers through PLK4-dependent phosphorylation.","authors":"Marina Arbi, Margarita Skamnelou, Lydia Koufoudaki, Vasiliki Bakali, Spyridoula Bournaka, Sihem Zitouni, Stavroula Tsaridou, Ozge Karayel, Catherine G Vasilopoulou, Aikaterini C Tsika, Nikolaos N Giakoumakis, Ourania Preza, Georgios A Spyroulias, Matthias Mann, Mónica Bettencourt-Dias, Stavros Taraviras, Zoi Lygerou","doi":"10.1038/s44319-026-00697-5","DOIUrl":"https://doi.org/10.1038/s44319-026-00697-5","url":null,"abstract":"<p><p>The centriole duplication cycle must be tightly controlled and coordinated with the chromosome cycle. Aberrations in centriole biogenesis can cause developmental disorders, ciliopathies and cancer, yet the molecular determinants controlling centriole numbers and the link between the two cycles remain poorly characterized. Here, we demonstrate that McIdas, previously implicated in cell cycle regulation and multiciliogenesis, plays a critical role in maintaining proper centriole numbers. McIdas localizes to centrioles, where it exhibits dynamic localization throughout the cell cycle, dependent upon a nuclear export signal (NES) in its coiled-coil domain. Overexpression of McIdas induces centriole overduplication, whereas its depletion perturbs daughter centriole biogenesis and SAS6 recruitment. An NES mutant of McIdas that fails to localize to centrioles does not induce centriole amplification. Moreover, McIdas depletion reduces PLK4-induced centriole amplification. McIdas interacts with and is phosphorylated by PLK4, which is critical for its role in centriole number control. Overall, our results demonstrate that in addition to its known nuclear localization, McIdas also localizes to centrioles, affecting centriole duplication. This novel, direct role of McIdas in centriole duplication connects its functions in cell cycle regulation and multiciliogenesis.</p>","PeriodicalId":11541,"journal":{"name":"EMBO Reports","volume":" ","pages":""},"PeriodicalIF":6.2,"publicationDate":"2026-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146124185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Toll signaling controls stem cell proliferation in intestinal regeneration and tumorigenesis. Toll信号控制肠道再生和肿瘤发生中的干细胞增殖。
IF 6.2 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2026-02-03 DOI: 10.1038/s44319-026-00693-9
Guofan Peng, Shichao Yang, Yuexia Zhang, Yu Zhao, Xiaoyun Huang, Shengen Yi, Lei Gu, Ganqian Zhu, Kewei Zheng, Huijun Zhou, Kang Han, Jun Zhou

The Drosophila Toll/NF-κB pathway has been extensively studied for its roles in innate immunity and embryonic development. Nevertheless, the regulatory mechanisms underlying Spz/Toll signaling in non-immune contexts remain poorly understood. Here, we demonstrate a critical role for Toll in regulating intestinal stem cell activity through direct transcriptional control of PI3K and Akt in an insulin-independent manner. Time-series transcriptomic analysis of intestinal damage and repair responses reveals that the stress-responsive factor Jumu regulates Spz expression to activate Toll signaling. Disruption of the Jumu/Spz/Toll cascade or PI3K/Akt signaling impairs intestinal regeneration and suppresses tumor growth, and epistasis analysis confirms that PI3K/Akt functions downstream of Toll. Our findings elucidate an autocrine Spz/Toll-mediated mechanism that drives stem cell function via the PI3K/Akt pathway during tissue homeostasis and uncover a critical non-immune role of Toll signaling in both physiological and pathological contexts.

果蝇Toll/NF-κB通路在先天免疫和胚胎发育中的作用已被广泛研究。然而,Spz/Toll信号在非免疫环境下的调控机制仍然知之甚少。在这里,我们证明Toll通过胰岛素不依赖的方式直接转录控制PI3K和Akt,在调节肠道干细胞活性中发挥关键作用。肠道损伤和修复反应的时间序列转录组学分析表明,应激反应因子Jumu调节Spz的表达,激活Toll信号。Jumu/Spz/Toll级联或PI3K/Akt信号的破坏会损害肠道再生并抑制肿瘤生长,并且经分析证实,PI3K/Akt在Toll的下游发挥作用。我们的研究结果阐明了自分泌Spz/Toll介导的机制,该机制在组织稳态期间通过PI3K/Akt通路驱动干细胞功能,并揭示了Toll信号在生理和病理背景下的关键非免疫作用。
{"title":"Toll signaling controls stem cell proliferation in intestinal regeneration and tumorigenesis.","authors":"Guofan Peng, Shichao Yang, Yuexia Zhang, Yu Zhao, Xiaoyun Huang, Shengen Yi, Lei Gu, Ganqian Zhu, Kewei Zheng, Huijun Zhou, Kang Han, Jun Zhou","doi":"10.1038/s44319-026-00693-9","DOIUrl":"https://doi.org/10.1038/s44319-026-00693-9","url":null,"abstract":"<p><p>The Drosophila Toll/NF-κB pathway has been extensively studied for its roles in innate immunity and embryonic development. Nevertheless, the regulatory mechanisms underlying Spz/Toll signaling in non-immune contexts remain poorly understood. Here, we demonstrate a critical role for Toll in regulating intestinal stem cell activity through direct transcriptional control of PI3K and Akt in an insulin-independent manner. Time-series transcriptomic analysis of intestinal damage and repair responses reveals that the stress-responsive factor Jumu regulates Spz expression to activate Toll signaling. Disruption of the Jumu/Spz/Toll cascade or PI3K/Akt signaling impairs intestinal regeneration and suppresses tumor growth, and epistasis analysis confirms that PI3K/Akt functions downstream of Toll. Our findings elucidate an autocrine Spz/Toll-mediated mechanism that drives stem cell function via the PI3K/Akt pathway during tissue homeostasis and uncover a critical non-immune role of Toll signaling in both physiological and pathological contexts.</p>","PeriodicalId":11541,"journal":{"name":"EMBO Reports","volume":" ","pages":""},"PeriodicalIF":6.2,"publicationDate":"2026-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146112597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SIRT4 regulates antiviral and autoimmune responses by promoting cGAS-mediated signaling pathways. SIRT4通过促进cgas介导的信号通路调节抗病毒和自身免疫反应。
IF 6.2 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2026-02-03 DOI: 10.1038/s44319-026-00708-5
Bo Yang, Yanjie Zhang, Saiyu Wang, Yufei Wu, Zilu Diao, Qunmei Zhang, Chen Lu, Mengyang Shen, Xuewei Zhang, Shujun Ma, Chunsheng Yang, Jinyong Pei, Hongxia Xing, Yinming Liang, Jie Wang

Cyclic guanosine monophosphate (GMP)-AMP synthase (cGAS) is a critical cytosolic DNA sensor, whose activity can be regulated by acetylation. Here, we show that nicotinamide adenine dinucleotide (NAD+)-dependent lysine deacetylase SIRT4 interacts with cGAS and positively regulates innate immune responses triggered by DNA viruses or cytoplasmic DNA. Overexpression of SIRT4 inhibits HSV-1 infection, whereas knockdown of SIRT4 has the opposite effect. Deficiency of SIRT4, or treatment with a SIRT4 inhibitor, impairs antiviral innate immune signaling in response to DNA viruses or cytoplasmic DNA, both in vitro and in vivo. Moreover, SIRT4 inhibitor treatment attenuates type I interferon signaling in Trex1-deficient cells and in peripheral blood mononuclear cells (PBMCs) from patients with systemic lupus erythematosus (SLE). Mechanistically, SIRT4 deacetylates cGAS and enhances its association with double‑stranded DNA. Collectively, our study identifies SIRT4 as a positive regulator of cGAS-mediated innate immune signaling pathways, which advances the understanding of the regulation of cGAS activity.

环鸟苷单磷酸(GMP)-AMP合成酶(cGAS)是一种重要的细胞质DNA传感器,其活性可通过乙酰化调节。在这里,我们发现烟酰胺腺嘌呤二核苷酸(NAD+)依赖赖氨酸去乙酰化酶SIRT4与cGAS相互作用,并积极调节DNA病毒或细胞质DNA触发的先天免疫反应。SIRT4过表达抑制HSV-1感染,而SIRT4敲低则有相反的效果。体外和体内研究表明,SIRT4缺乏或SIRT4抑制剂治疗会损害DNA病毒或细胞质DNA应答的抗病毒先天免疫信号。此外,SIRT4抑制剂治疗可减弱系统性红斑狼疮(SLE)患者trex1缺陷细胞和外周血单个核细胞(PBMCs)中的I型干扰素信号。在机制上,SIRT4使cGAS去乙酰化并增强其与双链DNA的关联。总之,我们的研究确定SIRT4是cGAS介导的先天免疫信号通路的正调节因子,这促进了对cGAS活性调节的理解。
{"title":"SIRT4 regulates antiviral and autoimmune responses by promoting cGAS-mediated signaling pathways.","authors":"Bo Yang, Yanjie Zhang, Saiyu Wang, Yufei Wu, Zilu Diao, Qunmei Zhang, Chen Lu, Mengyang Shen, Xuewei Zhang, Shujun Ma, Chunsheng Yang, Jinyong Pei, Hongxia Xing, Yinming Liang, Jie Wang","doi":"10.1038/s44319-026-00708-5","DOIUrl":"https://doi.org/10.1038/s44319-026-00708-5","url":null,"abstract":"<p><p>Cyclic guanosine monophosphate (GMP)-AMP synthase (cGAS) is a critical cytosolic DNA sensor, whose activity can be regulated by acetylation. Here, we show that nicotinamide adenine dinucleotide (NAD<sup>+</sup>)-dependent lysine deacetylase SIRT4 interacts with cGAS and positively regulates innate immune responses triggered by DNA viruses or cytoplasmic DNA. Overexpression of SIRT4 inhibits HSV-1 infection, whereas knockdown of SIRT4 has the opposite effect. Deficiency of SIRT4, or treatment with a SIRT4 inhibitor, impairs antiviral innate immune signaling in response to DNA viruses or cytoplasmic DNA, both in vitro and in vivo. Moreover, SIRT4 inhibitor treatment attenuates type I interferon signaling in Trex1-deficient cells and in peripheral blood mononuclear cells (PBMCs) from patients with systemic lupus erythematosus (SLE). Mechanistically, SIRT4 deacetylates cGAS and enhances its association with double‑stranded DNA. Collectively, our study identifies SIRT4 as a positive regulator of cGAS-mediated innate immune signaling pathways, which advances the understanding of the regulation of cGAS activity.</p>","PeriodicalId":11541,"journal":{"name":"EMBO Reports","volume":" ","pages":""},"PeriodicalIF":6.2,"publicationDate":"2026-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146112609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Peer-review ownership in the AI era. 人工智能时代的同行评议所有权。
IF 6.2 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2026-02-03 DOI: 10.1038/s44319-026-00706-7
Christos A Ouzounis
{"title":"Peer-review ownership in the AI era.","authors":"Christos A Ouzounis","doi":"10.1038/s44319-026-00706-7","DOIUrl":"https://doi.org/10.1038/s44319-026-00706-7","url":null,"abstract":"","PeriodicalId":11541,"journal":{"name":"EMBO Reports","volume":" ","pages":""},"PeriodicalIF":6.2,"publicationDate":"2026-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146112589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
EMBO Reports
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1