Dorine C Hintzen,Michael Schubert,Mar Soto,René H Medema,Jonne A Raaijmakers
{"title":"Reduction of chromosomal instability and inflammation is a common aspect of adaptation to aneuploidy.","authors":"Dorine C Hintzen,Michael Schubert,Mar Soto,René H Medema,Jonne A Raaijmakers","doi":"10.1038/s44319-024-00252-0","DOIUrl":null,"url":null,"abstract":"Aneuploidy, while detrimental to untransformed cells, is notably prevalent in cancer. Aneuploidy is found as an early event during tumorigenesis which indicates that cancer cells have the ability to surmount the initial stress responses associated with aneuploidy, enabling rapid proliferation despite aberrant karyotypes. To generate more insight into key cellular processes and requirements underlying adaptation to aneuploidy, we generated a panel of aneuploid clones in p53-deficient RPE-1 cells and studied their behavior over time. As expected, de novo-generated aneuploid clones initially display reduced fitness, enhanced levels of chromosomal instability (CIN), and an upregulated inflammatory response. Intriguingly, after prolonged culturing, aneuploid clones exhibit increased proliferation rates while maintaining aberrant karyotypes, indicative of an adaptive response to the aneuploid state. Interestingly, all adapted clones display reduced CIN and reduced inflammatory signaling, suggesting that these are common aspects of adaptation to aneuploidy. Collectively, our data suggests that CIN and concomitant inflammation are key processes that require correction to allow for fast proliferation in vitro. Finally, we provide evidence that amplification of oncogenic KRAS can promote adaptation.","PeriodicalId":11541,"journal":{"name":"EMBO Reports","volume":"19 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44319-024-00252-0","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Aneuploidy, while detrimental to untransformed cells, is notably prevalent in cancer. Aneuploidy is found as an early event during tumorigenesis which indicates that cancer cells have the ability to surmount the initial stress responses associated with aneuploidy, enabling rapid proliferation despite aberrant karyotypes. To generate more insight into key cellular processes and requirements underlying adaptation to aneuploidy, we generated a panel of aneuploid clones in p53-deficient RPE-1 cells and studied their behavior over time. As expected, de novo-generated aneuploid clones initially display reduced fitness, enhanced levels of chromosomal instability (CIN), and an upregulated inflammatory response. Intriguingly, after prolonged culturing, aneuploid clones exhibit increased proliferation rates while maintaining aberrant karyotypes, indicative of an adaptive response to the aneuploid state. Interestingly, all adapted clones display reduced CIN and reduced inflammatory signaling, suggesting that these are common aspects of adaptation to aneuploidy. Collectively, our data suggests that CIN and concomitant inflammation are key processes that require correction to allow for fast proliferation in vitro. Finally, we provide evidence that amplification of oncogenic KRAS can promote adaptation.
期刊介绍:
EMBO Reports is a scientific journal that specializes in publishing research articles in the fields of molecular biology, cell biology, and developmental biology. The journal is known for its commitment to publishing high-quality, impactful research that provides novel physiological and functional insights. These insights are expected to be supported by robust evidence, with independent lines of inquiry validating the findings.
The journal's scope includes both long and short-format papers, catering to different types of research contributions. It values studies that:
Communicate major findings: Articles that report significant discoveries or advancements in the understanding of biological processes at the molecular, cellular, and developmental levels.
Confirm important findings: Research that validates or supports existing knowledge in the field, reinforcing the reliability of previous studies.
Refute prominent claims: Studies that challenge or disprove widely accepted ideas or hypotheses in the biosciences, contributing to the correction and evolution of scientific understanding.
Present null data: Papers that report negative results or findings that do not support a particular hypothesis, which are crucial for the scientific process as they help to refine or redirect research efforts.
EMBO Reports is dedicated to maintaining high standards of scientific rigor and integrity, ensuring that the research it publishes contributes meaningfully to the advancement of knowledge in the life sciences. By covering a broad spectrum of topics and encouraging the publication of both positive and negative results, the journal plays a vital role in promoting a comprehensive and balanced view of scientific inquiry.