C. Y. Khor, Mohd Sharizal Abdul Aziz, Chooi Jing Qi, Xing Qi Lim, M. H. H. Ishak, Mohd Arif Anuar Mohd Salleh
{"title":"Effect of Epoxy Material Viscosity and Gold Wire Configuration on Light-Emitting Diode Encapsulation Process","authors":"C. Y. Khor, Mohd Sharizal Abdul Aziz, Chooi Jing Qi, Xing Qi Lim, M. H. H. Ishak, Mohd Arif Anuar Mohd Salleh","doi":"10.1007/s11664-024-11432-y","DOIUrl":null,"url":null,"abstract":"<p>This paper investigates the impacts of epoxy material viscosity and different gold wire configurations on the total maximum deformation, maximum von Mises stress, and maximum equivalent elastic strain on the light-emitting diode (LED) encapsulation process. The simulation of the LED encapsulation process employed the Volume of Fluid (VOF), Fluid–Structure Interaction (FSI), and System Coupling methods within ANSYS software. The simulation results for an epoxy molding compound (EMC) with viscosity of 0.448 kg/m·s were validated by an experiment. A grid independence test was run to determine the minimum mesh refinement required for the simulation. The results revealed that the final fluid profile of the EMC at 0.448 kg/m·s conformed more closely to the experimental results than the other epoxies. The overall best performance of the wire configuration to the EMC on the LED encapsulation process, in descending order, was the square-loop, triangle-loop, S-loop, Q-loop, and M-loop. This study contributes to understanding the effects of epoxy materials and various gold wire configurations on key mechanical parameters in the LED encapsulation process, hence guiding LED manufacturers in selecting optimal epoxy materials and wire configurations to improve process reliability and performance.</p>","PeriodicalId":626,"journal":{"name":"Journal of Electronic Materials","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronic Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11664-024-11432-y","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This paper investigates the impacts of epoxy material viscosity and different gold wire configurations on the total maximum deformation, maximum von Mises stress, and maximum equivalent elastic strain on the light-emitting diode (LED) encapsulation process. The simulation of the LED encapsulation process employed the Volume of Fluid (VOF), Fluid–Structure Interaction (FSI), and System Coupling methods within ANSYS software. The simulation results for an epoxy molding compound (EMC) with viscosity of 0.448 kg/m·s were validated by an experiment. A grid independence test was run to determine the minimum mesh refinement required for the simulation. The results revealed that the final fluid profile of the EMC at 0.448 kg/m·s conformed more closely to the experimental results than the other epoxies. The overall best performance of the wire configuration to the EMC on the LED encapsulation process, in descending order, was the square-loop, triangle-loop, S-loop, Q-loop, and M-loop. This study contributes to understanding the effects of epoxy materials and various gold wire configurations on key mechanical parameters in the LED encapsulation process, hence guiding LED manufacturers in selecting optimal epoxy materials and wire configurations to improve process reliability and performance.
期刊介绍:
The Journal of Electronic Materials (JEM) reports monthly on the science and technology of electronic materials, while examining new applications for semiconductors, magnetic alloys, dielectrics, nanoscale materials, and photonic materials. The journal welcomes articles on methods for preparing and evaluating the chemical, physical, electronic, and optical properties of these materials. Specific areas of interest are materials for state-of-the-art transistors, nanotechnology, electronic packaging, detectors, emitters, metallization, superconductivity, and energy applications.
Review papers on current topics enable individuals in the field of electronics to keep abreast of activities in areas peripheral to their own. JEM also selects papers from conferences such as the Electronic Materials Conference, the U.S. Workshop on the Physics and Chemistry of II-VI Materials, and the International Conference on Thermoelectrics. It benefits both specialists and non-specialists in the electronic materials field.
A journal of The Minerals, Metals & Materials Society.