Grinding defect characteristics and removal mechanism of unidirectional Cf/SiC composites

IF 4.2 2区 工程技术 Q2 ENGINEERING, MANUFACTURING Advances in Manufacturing Pub Date : 2024-09-18 DOI:10.1007/s40436-024-00521-0
Chong-Jun Wu, Fei Liu, Jia-Zhou Wen, Pei-Yun Xia, Steven Y. Liang
{"title":"Grinding defect characteristics and removal mechanism of unidirectional Cf/SiC composites","authors":"Chong-Jun Wu, Fei Liu, Jia-Zhou Wen, Pei-Yun Xia, Steven Y. Liang","doi":"10.1007/s40436-024-00521-0","DOIUrl":null,"url":null,"abstract":"<p>Owing to their brittleness and heterogeneity, achieving carbon fiber-reinforced silicon carbide ceramic (C<sub>f</sub>/SiC) composites with ideal dimensional and shape accuracy is difficult. In this study, unidirectional C<sub>f</sub> materials were subjected to orthogonal grinding experiments using different fiber orientations. Through a combined analysis of the surface morphology and grinding force after processing, the mechanism underlying the effect of the fiber orientation on the surface morphology of the material was explained. The surface roughness of the material was less affected by the process parameters and fluctuated around the fiber radius scale; the average surface roughness (<i>R</i><sub>a</sub>) in the direction of scratching parallel (SA) and perpendicular (SB) to the fiber direction was 4.21‒5.00 μm and 4.42‒5.26 μm, respectively; the material was mainly removed via the brittle removal mechanism; and the main defects of the fiber in the SA direction were tensile fracture and extrusion fracture; the main defects of the fiber in the SB direction were bending fracture, shear fracture, and fiber debonding. The grinding parameters influenced the grinding force in the order: depth of cut &gt; feed rate &gt; wheel speed. The grinding force increased with an increase in the feed rate or depth of cut and decreased with an increase in the wheel speed. Moreover, increasing the depth of cut was more effective in decreasing the grinding force and improving the material removal efficiency than adjusting the rotational speed of the workpiece and the rotational speed of the grinding wheel. The specific grinding energy decreased with an increase in the feed rate or depth of cut, and increased with an increase in the grinding wheel speed.</p>","PeriodicalId":7342,"journal":{"name":"Advances in Manufacturing","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40436-024-00521-0","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

Owing to their brittleness and heterogeneity, achieving carbon fiber-reinforced silicon carbide ceramic (Cf/SiC) composites with ideal dimensional and shape accuracy is difficult. In this study, unidirectional Cf materials were subjected to orthogonal grinding experiments using different fiber orientations. Through a combined analysis of the surface morphology and grinding force after processing, the mechanism underlying the effect of the fiber orientation on the surface morphology of the material was explained. The surface roughness of the material was less affected by the process parameters and fluctuated around the fiber radius scale; the average surface roughness (Ra) in the direction of scratching parallel (SA) and perpendicular (SB) to the fiber direction was 4.21‒5.00 μm and 4.42‒5.26 μm, respectively; the material was mainly removed via the brittle removal mechanism; and the main defects of the fiber in the SA direction were tensile fracture and extrusion fracture; the main defects of the fiber in the SB direction were bending fracture, shear fracture, and fiber debonding. The grinding parameters influenced the grinding force in the order: depth of cut > feed rate > wheel speed. The grinding force increased with an increase in the feed rate or depth of cut and decreased with an increase in the wheel speed. Moreover, increasing the depth of cut was more effective in decreasing the grinding force and improving the material removal efficiency than adjusting the rotational speed of the workpiece and the rotational speed of the grinding wheel. The specific grinding energy decreased with an increase in the feed rate or depth of cut, and increased with an increase in the grinding wheel speed.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单向 Cf/SiC 复合材料的磨削缺陷特征和去除机理
碳纤维增强碳化硅陶瓷(Cf/SiC)复合材料由于其脆性和异质性,很难达到理想的尺寸和形状精度。在本研究中,采用不同纤维取向对单向碳纤维材料进行了正交研磨实验。通过对加工后的表面形态和研磨力进行综合分析,解释了纤维取向对材料表面形态的影响机制。材料的表面粗糙度受工艺参数的影响较小,且围绕纤维半径尺度波动;与纤维方向平行(SA)和垂直(SB)的划痕方向的平均表面粗糙度(Ra)分别为 4.21-5.00 μm 和 4.42-5.26 μm;材料主要通过脆性去除机理去除;纤维在 SA 向的主要缺陷为拉伸断裂和挤压断裂;纤维在 SB 向的主要缺陷为弯曲断裂、剪切断裂和纤维脱粘。磨削参数对磨削力的影响依次为:切削深度;进给速度;砂轮速度。磨削力随进给量或切削深度的增加而增加,随砂轮速度的增加而减小。此外,在降低磨削力和提高材料去除效率方面,增加切削深度比调整工件转速和砂轮转速更有效。比磨削能量随进给速度或切削深度的增加而降低,随砂轮转速的增加而升高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in Manufacturing
Advances in Manufacturing Materials Science-Polymers and Plastics
CiteScore
9.10
自引率
3.80%
发文量
274
期刊介绍: As an innovative, fundamental and scientific journal, Advances in Manufacturing aims to describe the latest regional and global research results and forefront developments in advanced manufacturing field. As such, it serves as an international platform for academic exchange between experts, scholars and researchers in this field. All articles in Advances in Manufacturing are peer reviewed. Respected scholars from the fields of advanced manufacturing fields will be invited to write some comments. We also encourage and give priority to research papers that have made major breakthroughs or innovations in the fundamental theory. The targeted fields include: manufacturing automation, mechatronics and robotics, precision manufacturing and control, micro-nano-manufacturing, green manufacturing, design in manufacturing, metallic and nonmetallic materials in manufacturing, metallurgical process, etc. The forms of articles include (but not limited to): academic articles, research reports, and general reviews.
期刊最新文献
Grinding defect characteristics and removal mechanism of unidirectional Cf/SiC composites The effect of the slope angle and the magnetic field on the surface quality of nickel-based superalloys in blasting erosion arc machining Study on the mechanism of burr formation in ultrasonic vibration-assisted honing 9Cr18MoV valve sleeve Flexible modification and texture prediction and control method of internal gearing power honing tooth surface ·AI-enabled intelligent cockpit proactive affective interaction: middle-level feature fusion dual-branch deep learning network for driver emotion recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1