Exploring Action-Centric Representations Through the Lens of Rate-Distortion Theory

Miguel de Llanza Varona, Christopher L. Buckley, Beren Millidge
{"title":"Exploring Action-Centric Representations Through the Lens of Rate-Distortion Theory","authors":"Miguel de Llanza Varona, Christopher L. Buckley, Beren Millidge","doi":"arxiv-2409.08892","DOIUrl":null,"url":null,"abstract":"Organisms have to keep track of the information in the environment that is\nrelevant for adaptive behaviour. Transmitting information in an economical and\nefficient way becomes crucial for limited-resourced agents living in\nhigh-dimensional environments. The efficient coding hypothesis claims that\norganisms seek to maximize the information about the sensory input in an\nefficient manner. Under Bayesian inference, this means that the role of the\nbrain is to efficiently allocate resources in order to make predictions about\nthe hidden states that cause sensory data. However, neither of those frameworks\naccounts for how that information is exploited downstream, leaving aside the\naction-oriented role of the perceptual system. Rate-distortion theory, which\ndefines optimal lossy compression under constraints, has gained attention as a\nformal framework to explore goal-oriented efficient coding. In this work, we\nexplore action-centric representations in the context of rate-distortion\ntheory. We also provide a mathematical definition of abstractions and we argue\nthat, as a summary of the relevant details, they can be used to fix the content\nof action-centric representations. We model action-centric representations\nusing VAEs and we find that such representations i) are efficient lossy\ncompressions of the data; ii) capture the task-dependent invariances necessary\nto achieve successful behaviour; and iii) are not in service of reconstructing\nthe data. Thus, we conclude that full reconstruction of the data is rarely\nneeded to achieve optimal behaviour, consistent with a teleological approach to\nperception.","PeriodicalId":501517,"journal":{"name":"arXiv - QuanBio - Neurons and Cognition","volume":"75 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Neurons and Cognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08892","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Organisms have to keep track of the information in the environment that is relevant for adaptive behaviour. Transmitting information in an economical and efficient way becomes crucial for limited-resourced agents living in high-dimensional environments. The efficient coding hypothesis claims that organisms seek to maximize the information about the sensory input in an efficient manner. Under Bayesian inference, this means that the role of the brain is to efficiently allocate resources in order to make predictions about the hidden states that cause sensory data. However, neither of those frameworks accounts for how that information is exploited downstream, leaving aside the action-oriented role of the perceptual system. Rate-distortion theory, which defines optimal lossy compression under constraints, has gained attention as a formal framework to explore goal-oriented efficient coding. In this work, we explore action-centric representations in the context of rate-distortion theory. We also provide a mathematical definition of abstractions and we argue that, as a summary of the relevant details, they can be used to fix the content of action-centric representations. We model action-centric representations using VAEs and we find that such representations i) are efficient lossy compressions of the data; ii) capture the task-dependent invariances necessary to achieve successful behaviour; and iii) are not in service of reconstructing the data. Thus, we conclude that full reconstruction of the data is rarely needed to achieve optimal behaviour, consistent with a teleological approach to perception.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从速率失真理论的角度探索以动作为中心的表象
生物必须跟踪环境中与适应性行为相关的信息。对于生活在高维环境中的资源有限的生物来说,以经济高效的方式传递信息变得至关重要。高效编码假说认为,生物寻求以高效的方式最大限度地获取感官输入信息。在贝叶斯推论下,这意味着大脑的作用是有效地分配资源,以便对导致感官数据的隐藏状态做出预测。然而,抛开知觉系统以行动为导向的作用不谈,这两个框架都没有说明这些信息是如何被下游利用的。速率失真理论定义了约束条件下的最优有损压缩,作为探索以目标为导向的高效编码的一种形式框架,它已经引起了人们的关注。在这项研究中,我们以速率失真理论为背景,探讨了以动作为中心的表征。我们还提供了抽象的数学定义,并认为作为相关细节的总结,抽象可用于固定以动作为中心的表示的内容。我们使用 VAE 对以动作为中心的表征进行建模,发现这种表征 i) 是对数据的高效有损压缩;ii) 捕获了实现成功行为所必需的与任务相关的不变性;iii) 并不有助于重建数据。因此,我们得出结论,要实现最佳行为,很少需要完全重建数据,这与目的论感知方法是一致的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Early reduced dopaminergic tone mediated by D3 receptor and dopamine transporter in absence epileptogenesis Contrasformer: A Brain Network Contrastive Transformer for Neurodegenerative Condition Identification Identifying Influential nodes in Brain Networks via Self-Supervised Graph-Transformer Contrastive Learning in Memristor-based Neuromorphic Systems Self-Attention Limits Working Memory Capacity of Transformer-Based Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1