A Domain Generation Diagnosis Framework for Unseen Conditions Based on Adaptive Feature Fusion and Augmentation

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-09-14 DOI:10.3390/math12182865
Tong Zhang, Haowen Chen, Xianqun Mao, Xin Zhu, Lefei Xu
{"title":"A Domain Generation Diagnosis Framework for Unseen Conditions Based on Adaptive Feature Fusion and Augmentation","authors":"Tong Zhang, Haowen Chen, Xianqun Mao, Xin Zhu, Lefei Xu","doi":"10.3390/math12182865","DOIUrl":null,"url":null,"abstract":"Emerging deep learning-based fault diagnosis methods have advanced in the current industrial scenarios of various working conditions. However, the prerequisite of obtaining target data in advance limits the application of these models to practical engineering scenarios. To address the challenge of fault diagnosis under unseen working conditions, a domain generation framework for unseen conditions fault diagnosis is proposed, which consists of an Adaptive Feature Fusion Domain Generation Network (AFFN) and a Mix-up Augmentation Method (MAM) for both the data and domain spaces. AFFN is utilized to fuse domain-invariant and domain-specific representations to improve the model’s generalization performance. MAM enhances the model’s exploration ability for unseen domain boundaries. The diagnostic framework with AFFN and MAM can effectively learn more discriminative features from multiple source domains to perform different generalization tasks for unseen working loads and machines. The feasibility of the proposed unseen conditions diagnostic framework is validated on the SDUST and PU datasets and achieved peak diagnostic accuracies of 94.15% and 93.27%, respectively.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3390/math12182865","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Emerging deep learning-based fault diagnosis methods have advanced in the current industrial scenarios of various working conditions. However, the prerequisite of obtaining target data in advance limits the application of these models to practical engineering scenarios. To address the challenge of fault diagnosis under unseen working conditions, a domain generation framework for unseen conditions fault diagnosis is proposed, which consists of an Adaptive Feature Fusion Domain Generation Network (AFFN) and a Mix-up Augmentation Method (MAM) for both the data and domain spaces. AFFN is utilized to fuse domain-invariant and domain-specific representations to improve the model’s generalization performance. MAM enhances the model’s exploration ability for unseen domain boundaries. The diagnostic framework with AFFN and MAM can effectively learn more discriminative features from multiple source domains to perform different generalization tasks for unseen working loads and machines. The feasibility of the proposed unseen conditions diagnostic framework is validated on the SDUST and PU datasets and achieved peak diagnostic accuracies of 94.15% and 93.27%, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于自适应特征融合与增强的未知条件领域生成诊断框架
基于深度学习的新兴故障诊断方法在当前各种工况的工业场景中取得了进展。然而,提前获取目标数据的前提条件限制了这些模型在实际工程场景中的应用。为了应对在未知工况下进行故障诊断的挑战,本文提出了一种用于未知工况故障诊断的域生成框架,该框架由数据空间和域空间的自适应特征融合域生成网络(AFFN)和混合增强方法(MAM)组成。AFFN 用于融合域不变和域特定的表征,以提高模型的泛化性能。MAM 增强了模型对未知领域边界的探索能力。带有 AFFN 和 MAM 的诊断框架可以有效地从多个源域中学习更多的判别特征,从而针对未知的工作负载和机器执行不同的泛化任务。我们在 SDUST 和 PU 数据集上验证了所提出的未知工况诊断框架的可行性,其峰值诊断准确率分别达到 94.15% 和 93.27%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1