Effect of Chloride Ions on the Electrochemical Performance of Magnesium Metal-Organic-Frameworks-based Semi-Solid Electrolytes.

IF 5.1 4区 材料科学 Q2 ELECTROCHEMISTRY Batteries & Supercaps Pub Date : 2024-09-18 DOI:10.1002/batt.202400420
Mohamed M. Elnagar, Hagar K. Hassan, Ludwig Kibler, Timo Jacob
{"title":"Effect of Chloride Ions on the Electrochemical Performance of Magnesium Metal-Organic-Frameworks-based Semi-Solid Electrolytes.","authors":"Mohamed M. Elnagar, Hagar K. Hassan, Ludwig Kibler, Timo Jacob","doi":"10.1002/batt.202400420","DOIUrl":null,"url":null,"abstract":"The majority of research on magnesium (Mg) electrolytes has focused on enhancing reversible Mg deposition, often employing chloride-containing electrolytes. However, there is a notable gap in the literature regarding the influence of chloride ions in semi-solid Mg electrolytes. In this study, we systematically explore the impact of chloride ions on Mg deposition/dissolution on a copper (Cu) anode using a semi-solid electrolyte composed of Mg-based mixed metal-organic frameworks, MgCl2 and Mg(TFSI)2. We separate the Mg deposition/dissolution process from changes in the anode’s surface morphology through cyclic voltammetry and galvanostatic cycling. In this respect, the morphological and compositional transformations in the electrolyte and electrode following galvanostatic cycling are meticulously investigated. Initial potential cycling reveals the feasibility of Mg deposition/dissolution on Cu electrodes, albeit with reduced reversibility in subsequent cycles. Extending the upper potential limit to 4.0 V vs. Mg/Mg2+ enhances Mg dissolution, attributed to chloride ions facilitating Cu surface dissolution. Our findings provide insights into optimizing semi-solid electrolytes for advanced Magnesium battery technologies.","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"18 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Batteries & Supercaps","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/batt.202400420","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

The majority of research on magnesium (Mg) electrolytes has focused on enhancing reversible Mg deposition, often employing chloride-containing electrolytes. However, there is a notable gap in the literature regarding the influence of chloride ions in semi-solid Mg electrolytes. In this study, we systematically explore the impact of chloride ions on Mg deposition/dissolution on a copper (Cu) anode using a semi-solid electrolyte composed of Mg-based mixed metal-organic frameworks, MgCl2 and Mg(TFSI)2. We separate the Mg deposition/dissolution process from changes in the anode’s surface morphology through cyclic voltammetry and galvanostatic cycling. In this respect, the morphological and compositional transformations in the electrolyte and electrode following galvanostatic cycling are meticulously investigated. Initial potential cycling reveals the feasibility of Mg deposition/dissolution on Cu electrodes, albeit with reduced reversibility in subsequent cycles. Extending the upper potential limit to 4.0 V vs. Mg/Mg2+ enhances Mg dissolution, attributed to chloride ions facilitating Cu surface dissolution. Our findings provide insights into optimizing semi-solid electrolytes for advanced Magnesium battery technologies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
氯离子对基于金属有机框架的镁半固态电解质电化学性能的影响
有关镁(Mg)电解质的大部分研究都集中在增强镁的可逆沉积上,通常采用含氯化物的电解质。然而,关于氯离子在半固态镁电解质中的影响,文献中还存在明显的空白。在本研究中,我们使用由镁基混合金属有机框架、MgCl2 和 Mg(TFSI)2 组成的半固态电解质,系统地探讨了氯离子对铜(Cu)阳极上镁沉积/溶解的影响。我们通过循环伏安法和电静态循环将镁的沉积/溶解过程与阳极表面形态的变化分离开来。为此,我们对电位循环后电解质和电极的形态和成分变化进行了细致的研究。初始电位循环揭示了镁在铜电极上沉积/溶解的可行性,尽管在随后的循环中可逆性有所降低。将相对于 Mg/Mg2+ 的电位上限扩展到 4.0 V,可增强镁的溶解,这归因于氯离子促进了铜表面的溶解。我们的研究结果为优化先进镁电池技术的半固体电解质提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.60
自引率
5.30%
发文量
223
期刊介绍: Electrochemical energy storage devices play a transformative role in our societies. They have allowed the emergence of portable electronics devices, have triggered the resurgence of electric transportation and constitute key components in smart power grids. Batteries & Supercaps publishes international high-impact experimental and theoretical research on the fundamentals and applications of electrochemical energy storage. We support the scientific community to advance energy efficiency and sustainability.
期刊最新文献
Cover Feature: Electrospun Quasi-Composite Polymer Electrolyte with Hydoxyl-Anchored Aluminosilicate Zeolitic Network for Dendrite Free Lithium Metal Batteries (Batteries & Supercaps 11/2024) Cover Picture: Enhancing the Supercapacitive Behaviour of Cobalt Layered Hydroxides by 3D Structuring and Halide Substitution (Batteries & Supercaps 11/2024) Cover Feature: Metal-Organic Framework Materials as Bifunctional Electrocatalyst for Rechargeable Zn-Air Batteries (Batteries & Supercaps 11/2024) Cover Picture: Ethanol-Based Solution Synthesis of a Functionalized Sulfide Solid Electrolyte: Investigation and Application (Batteries & Supercaps 10/2024) Cover Feature: Can Prussian Blue Analogues be Holy Grail for Advancing Post-Lithium Batteries? (Batteries & Supercaps 10/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1